Abstract:
Submicron-dimensioned MOS and/or CMOS transistors are fabricated by a process employing removable sidewall spacers made of a material, such as UV-nitride, which is readily etched in its as-deposited, undensified state but difficult-to-etch in its thermally annealed, densified state. The as-deposited, undensified spacers are removed by etching with dilute aqueous HF after implantation of heavily-sloped source/drain junction regions but prior to annealing of the implant for dopant diffusion/activation and lattice damage relaxation. Lightly-or moderately doped, shallow-depth source/drain extensions are implanted and annealed after spacer removal.
Abstract:
A method of manufacturing an integrated circuit to optimize the contact resistance between impurity diffusing layers and silicide is disclosed herein. The method includes implanting a first material to a layer of semiconductor to create a buried amorphous silicon layer; implanting a second material in the layer of semiconductor and buried amorphous layer, forming a dopant profile region with a curved shape; depositing a layer of metal on the layer of semiconductor; melting the buried amorphous layer to reconfigure the curved shape to a substantially vertical profile of maximum dopant concentration; and forming silicide with the layer of semiconductor and layer of metal, the bottom of the silicide located in the vertical shape on the dopant profile region.
Abstract:
A method of forming a region of impurity in a semiconductor substrate with minimal damage. The method includes the steps of: forming a reaction-inhibiting impurity region in the semiconductor substrate to a depth below the semiconductor substrate; and applying laser energy to the semiconductor substrate at a sufficient magnitude to liquify the semiconductor substrate in the region.
Abstract:
A dental adhesive containing an acidic group-containing radically polymerizable monomer, a non-acidic radically polymerizable monomer, a chemical polymerization initiator and a filler, as well as a 2,4-diphenyl-4-methyl-1-pentene. When the dental adhesive is used for adhering a crown restorative to the tooth, an excess of cement swelling from the surface of adhesion can be favorably removed, the curing time can be suitably adjusted without decreasing the strength of adhesion to the tooth, and a change in the color tone of the cured body can be effectively suppressed.
Abstract:
Submicron-dimensioned, MOSFET devices are formed using multiple implants for forming an impurity concentration distribution profile exhibiting three impurity concentration peaks at a predetermined depths below the semiconductor surface substrate. The inventive method reduces “latch-up” and “punch-through” with controllable adjustment of the threshold voltage.
Abstract:
Depletion of dopant from polysilicon gate layers with attendant dopant penetration of underlying gate oxide layers of silicon-based MOS and CMOS transistor devices are reduced or substantially eliminated by a process wherein a thin, high-quality silicon oxide gate insulator layer initially formed on a surface of a heavily-doped polysilicon substrate. The oxide layer is then subjected to impurity ion implantation selected to penetrate a desired depth into the underlying semiconductor substrate for formation of a structurally weakened cleavage plane thereat. The cleaved substrate is then bonded, via the silicon oxide gate insulator layer, to a second, lightly- to moderately-doped semiconductor substrate of similar conductivity type. The thus-produced composite is then subjected to further processing for patterning of the heavily-doped gate and gate insulator layers and to define active areas for formation of source/drain regions in the second, lightly-doped substrate.
Abstract:
Silicon-based, submicron-dimensioned MOS and/or CMOS transistor devices having substantially reduced source/drain junction-to-semiconductor substrate capacitance are formed by implanting oxygen atoms and/or molecules just below source/drain implant regions. Implantation conditions are selected to provide a peak oxygen implant concentration at a depth just below the ultimate source/drain junction depth. Subsequent thermal processing at elevated temperature results in source/drain dopant diffusion/activation and formation of a silicon oxide barrier layer or stratum just below the ultimate source/drain junction depth, thereby substantially reducing junction-to-substrate capacitance of refractory metal silicide-contact devices.
Abstract:
Submicron-dimensioned MOS and/or CMOS transistors are fabricated by a process employing removable sidewall spacers made of a material, such as UV-nitride, which has been treated subsequent to its deposition, e.g., by ion implantation, to augment its etch rate with a room temperature etchant, e.g., dilute aqueous HF. The treated spacers are removed with the dilute, aqueous HF after implantation of moderately or heavily-doped source/drain regions but prior to any post-implantation annealing processing, in order not to increase the etch resistance of the spacer material by thermally-induced densification.
Abstract:
Sub-micron-dimensioned, asymmetrically-configured MOS and/or CMOS transistors are fabricated using removable sidewall spacers made of a material, such as UV-nitride, one of which is selectively treated subsequent to deposition, e.g., by ion implantation, to augment the etch rate thereof with a room temperature etchant, e.g., dilute aqueous HF. The treated spacer is removed with the dilute, aqueous HF prior to implantation of asymmetrically-configured, moderately or heavily-doped source/drain regions but prior to any post-implantation annealing processing, in order not to increase the etch resistance of the spacer material by thermally-induced densification.
Abstract:
A semiconductor device with shallow junctions is obtained by forming shallow source/drain extensions followed by forming a film over the gate electrode and the semiconductor substrate. The film is formed having a targeted thicknesses to facilitate gate electrode doping and source/drain formation. Ion implantation is then conducted to fully dope the gate electrode and form moderately or heavily doped source/drain implants, thereby reducing gate depletion.