Abstract:
A piston for an internal combustion engine including a piston body (20). The piston body (20) defines a first cooling chamber (46) that is sealed closed and contains a first cooling medium (48) other than air. During operation of the piston, the first cooling medium (48) extracts heat from the surrounding regions of the piston body (20) to cool the piston body (20). The piston body (20) also defines a second cooling chamber (50) adjacent to the first cooling chamber (46). A cooling oil (51) is projected into the second cooling chamber (50) and against the portion of the piston body (20) separating the first and second cooling chambers (46, 50) to extract heat from the first cooling medium (48). The cooling oil (51) is redirected within the second cooling chamber (50) to extract additional heat from the first cooling medium (48) or directly from the piston body (20).
Abstract:
The invention provides a low tension piston ring having a finished outer diameter and negligible tangential tension. The method includes the steps of machining a stock bar to an initial outer diameter slightly greater than the finished outer diameter of the piston ring, finishing the initial outer diameter of the stock bar to a rounded profile having a nominal diameter equal to the finished outer diameter, and machining the stock bar to the preferred cross-section. Dykes-type piston rings can have keystone or semi-keystone shaped cross-sections. The method continues by detaching the piston ring from the stock bar using a parting tool in response to completing all tension inducing operations including the steps recited above. The method continues with the steps of lapping the piston ring to a final longitudinal thickness and cutting the piston ring longitudinally to form a final gap.
Abstract:
A steel piston for heavy-duty diesel engines designed with features that increase adiabaticity, reduce weight, and improve passive cooling without loss of power density is provided. The piston includes a pair of skirt walls extending longitudinally from a crown to a lower end. The skirt walls include a plurality of heat sink wells extending axially from the crown to a lower end of the skirt wall. Each heat sink well is at least partially filled with a cooling medium and is sealed. The piston also includes a plurality of ribs each radially aligned with one of the heat sink wells and extending inwardly and upwardly from a first rib end at an inner surface of the skirt wall to a second rib end at the inner surface of the crown.
Abstract:
A piston assembly and method of construction thereof for an internal combustion engine are provided. The assembly includes a piston head having an upper combustion wall with an undercrown surface and a ring belt region. The piston head has a floor with an upper surface and a bottom surface. The floor is spaced beneath the upper combustion wall in radial alignment with the ring belt region. A substantially enclosed, annular cooling gallery is bounded by the undercrown surface and the floor. A pair of pin bores depends directly from the floor of the cooling gallery. The assembly further includes a pin having ends configured for oscillating receipt in the pin bores. A pin bearing surface extends within the pin bores and between the pin bores in the lower surface of the floor. The assembly includes a connecting rod with an end fixed to the pin for conjoint oscillation therewith.
Abstract:
A piston for an internal combustion engine having an improved oil control ring is provided. The piston has a piston body providing an upper combustion surface and an annular outer wall depending therefrom. A ring belt region including a plurality of ring grooves is formed in the annular outer wall. A first compression ring is disposed in one of the ring grooves and the oil control ring is disposed in another of the ring grooves. The oil control ring has generally parallel, planar upper and lower surfaces, with the upper and lower surfaces having an annular groove recessed therein. A through opening can be formed to bring the annular grooves into fluid communication with one another. The annular grooves collect oil scraped from a cylinder wall and return oil to the crank sump and reduce the contact area between the oil control ring and the wall of the ring groove.
Abstract:
A steel piston for heavy-duty diesel engines designed with features that increase adiabaticity, reduce weight, and improve passive cooling without loss of power density is provided. The piston includes a pair of skirt walls extending longitudinally from a crown to a lower end. The skirt walls include a plurality of heat sink wells extending axially from the crown to a lower end of the skirt wall. Each heat sink well is at least partially filled with a cooling medium and is sealed. The piston also includes a plurality of ribs each radially aligned with one of the heat sink wells and extending inwardly and upwardly from a first rib end at an inner surface of the skirt wall to a second rib end at the inner surface of the crown.
Abstract:
A piston assembly, piston therefor and methods of construction are provided. The assembly includes a piston head and connecting rod operably coupled thereto via a wrist pin. The piston head has an upper crown with a combustion bowl and an undercrown surface. The lower crown includes axially aligned pin bores receiving the wrist pin. An upper wall of the lower crown has an oil inlet, an oil outlet and a concave, saddle bearing surface that bears against the wrist pin. A toroid-shaped outer cooling gallery is formed between wall portions of the upper and lower crowns, wherein the outer cooling gallery surrounds an inner cooling gallery. The connecting rod is fixed to the wrist pin for conjoint oscillation. The connecting rod has an oil passage in fluid communication with a through hole in the wrist pin to allow oil to flow therethrough into the inner cooling gallery via the oil inlet.
Abstract:
A piston assembly and method of construction thereof for an internal combustion engine are provided. The assembly includes a piston head having an upper combustion wall with an undercrown surface and a ring belt region. The piston head has a floor with an upper surface and a bottom surface. The floor is spaced beneath the upper combustion wall in radial alignment with the ring belt region. A substantially enclosed, annular cooling gallery is bounded by the undercrown surface and the floor. A pair of pin bores depends directly from the floor of the cooling gallery. The assembly further includes a pin having ends configured for oscillating receipt in the pin bores. A pin bearing surface extends within the pin bores and between the pin bores in the lower surface of the floor. The assembly includes a connecting rod with an end fixed to the pin for conjoint oscillation therewith.
Abstract:
A piston for an internal combustion engine and method of construction thereof are provided. The piston includes a piston body having an upper combustion surface and an annular cooling gallery surrounding an undercrown region. An outer wall depends from the upper combustion surface. An annular ring belt region is formed in the outer wall adjacent the upper combustion surface. The ring belt region has at least one ring groove formed therein. At least one oil passage extends from the at least one ring groove to the cooling gallery. The oil passage has a first portion depending radially inwardly from the ring groove and a second portion ascending radially inwardly from the first portion to the cooling gallery.
Abstract:
A piston for an internal combustion engine and method of construction thereof are provided. The piston includes a piston body having an upper combustion surface and an annular cooling gallery surrounding an undercrown region. An outer wall depends from the upper combustion surface. An annular ring belt region is formed in the outer wall adjacent the upper combustion surface. The ring belt region has at least one ring groove formed therein. At least one oil passage extends from the at least one ring groove to the cooling gallery. The oil passage has a first portion depending radially inwardly from the ring groove and a second portion ascending radially inwardly from the first portion to the cooling gallery.