Abstract:
A hardcoat film has a substrate, a hardcoat layer, and a mixed layer in this order. The hardcoat layer contains a cured product of polyorganosilsesquioxane (a1) having an epoxy group. The mixed layer contains a cured product of a compound (b1) having an epoxy group and a cured product of a compound (b2) having two or more (meth)acryloyl groups in one molecule.
Abstract:
An m-phenylenediamine compound is represented by the following General Formula (I), (II), or (III). R1 represents a hydrogen atom, an alkyl group, a cycloalkyl group, or an aryl group. R2, R3, and R4 each represent an alkyl group. R5 and R6 each represent an alkyl group. X represents a chlorine atom or a bromine atom. A method for producing a polymer compound includes obtaining a polymer compound by using the m-phenylenediamine compound represented by General Formula (I) as a raw material.
Abstract:
A gas separation membrane includes a gas separation layer containing a polyimide compound, and the polyimide compound has a repeating unit represented by Formula (I). The gas separation module, the gas separation device, and the gas separation method are obtained by using the gas separation membrane, Ra represents a specific tetravalent group, Rb represents a trivalent group having a specific ring, Xa represents a specific substituent, and Xb represents a hydrogen atom or a substituent. A polyimide compound represented by Formula (I-b) or (I-c), Ra represents a specific tetravalent group, Rc represents a specific divalent group, Aa, Ab, Ac, and Xb represent a hydrogen atom or a substituent, and Xc and Xd represent a specific substituent.
Abstract:
Provided are a coating solution for a non-light-emitting organic semiconductor device having high carrier mobility that contains a compound represented by Formula (2) and a solvent having a boiling point of equal to or higher than 100° C., an organic transistor, a compound, an organic semiconductor material for a non-light-emitting organic semiconductor device, a material for an organic transistor, a method for manufacturing an organic transistor, and a method for manufacturing an organic semiconductor film. (In Formula (2), R11 and R12 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, or an alkoxy group and may have a substituent, and an aromatic portion in Formula (2) may be substituted with a halogen atom.)
Abstract:
Objects of the present invention are to provide an organic semiconductor element in which carrier mobility is high, variation of mobility is suppressed, and temporal stability under high temperature and high humidity is excellent, and a manufacturing method thereof, to provide a novel compound suitable for an organic semiconductor, and to provide an organic semiconductor film in which mobility is high, variation of mobility is suppressed, and temporal stability under high temperature and high humidity is excellent, a manufacturing method thereof, and an organic semiconductor composition that can suitably form the organic semiconductor film.The organic semiconductor element according to the present invention is an organic semiconductor layer containing a compound having a constitutional repeating unit represented by Formula 1 and having a molecular weight of 2,000 or greater. D-A (1)
Abstract:
An object of the invention is to provide an organic semiconductor element in which mobility is high, heat resistance is excellent, and variation of mobility is suppressed, and a manufacturing method thereof, to provide a novel compound that is suitable as an organic semiconductor, and to provide an organic semiconductor film in which mobility is high, heat resistance is excellent, and variation of mobility is suppressed and a composition for forming an organic semiconductor film that can suitably form the organic semiconductor film.The organic semiconductor element according to the invention has an organic semiconductor layer containing a compound having a constitutional repeating unit represented by Formula 1 or 2 below.
Abstract:
Provided are a coating solution for a non-light-emitting organic semiconductor device having high carrier mobility that contains a compound represented by Formula (2) and a solvent having a boiling point of equal to or higher than 100° C., an organic transistor, a compound, an organic semiconductor material for a non-light-emitting organic semiconductor device, a material for an organic transistor, a method for manufacturing an organic transistor, and a method for manufacturing an organic semiconductor film. (In Formula (2), R11 and R12 each independently represent a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, or an alkoxy group and may have a substituent, and an aromatic portion in Formula (2) may be substituted with a halogen atom.)