Abstract:
Duty-cycle correction circuits, clock distribution networks, and methods for correcting duty-cycle distortion are disclosed, including methods and apparatus for correcting duty-cycle distortion of differential output clock signals provided from a clock distribution network. In one such method, a single-ended clock signal is generated from differential input clock signals for distribution over a clock distribution network and from which the differential output clock signals are generated. A delay of a model delay path is matched to a propagation delay of the clock distribution network, and the single ended clock signal is adjusted to compensate for duty-cycle distortion.
Abstract:
Disclosed are methods of enhancing immune responses. Such methods involve the administration of vaccine compositions to different tissues to elicit an enhanced immune response. The enhanced response arises from the vaccination and boosting route of administration in two separate patient tissues, for example, by first administering a priming vaccination into skin and later administering a boost vaccination in muscle. In each case, priming and boosting, the administration of the vaccine composition is preferably carried out using contemporaneous electroporation-assisted delivery of the antigenic agent.
Abstract:
This invention safeguards the integrity of a machine-printed paper document by entangling a characteristic signature derived from the document's paper grain structure with the identities of the printing device and the person or organization which issued the document. This protection is achieved using a certification phase performed by an augmented document printer and an authentication phase performed by an augmented document scanner. In the certification phase, the grain structure of a specific area of the original paper is imaged and processed to generate a unique signature for the paper. This signature is doubly encrypted using the private keys of the augmented printer and the certifier. These encryption steps entangle the signature of the paper with its source information in a way that thwarts counterfeiting attacks which either copy the document or falsely attribute its source to a specific printer and/or certifier.
Abstract:
A system and method for range dependent weighting in ultrasound imaging. The system includes a transducer array, a data acquisition system, and an imaging processor. The transducer array receives a first ultrasound beam having a first focal depth. The data acquisition system receives a first ultrasound imaging signal from the array. The first signal includes first image data based on at least the first ultrasound beam. The imaging processor combines a first data contribution from the first image data with at least second image data from a second ultrasound imaging signal to create a spatially compounded image. The first data contribution is based on at least the focal depth of the first beam.
Abstract:
An application-oriented and intelligent method for switching communication modes of a dual-mode communication module is provided. Whether the application program utilizes location-based service is first confirmed. When the application program utilizes location-based service, said communication module is switched to the first communication mode. Otherwise, evaluation, about which one from both the first communication mode and the second communication mode is more beneficial for a user, is performed on the communication module, according to both an available bandwidth and quality of service provided by a communication mode and to both a power and a credit of utilizing communication functions of the communication module. At last, a result of the evaluation is utilized for determining which communication mode from both the first communication mode and the second communication mode to be utilized by the communication module.
Abstract:
Delay locked loop circuits and methods are disclosed. In the embodiments, a delay locked loop may include a phase detector to detect a phase difference between a clock signal and a reference clock signal, and a charge pump that receives the detected phase difference. A low pass filter may filter an output from the charge pump. The delay locked loop may further include a delay line having a plurality of delay elements, the plurality of delay elements including a first selectable group and a second selectable group that is larger than the first selectable group. A first clock signal from the first group of delay elements may be provided to the phase detector to first synchronize the delay locked loop, and following the synchronization, a second clock signal from the second group may be employed to synchronize the delay locked loop.
Abstract:
Clock signal distribution systems with reduced parasitic loading effects are provided. A reference clock is frequency-divided to produce a lower frequency clock signal. A delay-locked loop (DLL) circuit locks to the lower frequency clock signal, and outputs a corresponding lower frequency clock signal for distribution over a long trace. Power consumption caused by parasitic capacitance of the trace is thereby reduced. Parasitic effects associated with clock jitter are also reduced. A frequency multiplying phase-locked loop (PLL) circuit locks to the lower frequency clock signal, and outputs at least one clock signal having a higher frequency than the lower frequency signal.
Abstract:
With the aid of critical conditions including remaining power of a communication module and both an available bandwidth and a credit of utilizing communication functions of said communication module, and by cooperating with available network services of said communication module, a communication network currently appropriates for said communication module to be switched to is determined, for achieving an aim of retrieving network services and taking requirements of users into consideration simultaneously. Moreover, when there are no available network services for the communication module, said communication module enters a sleep state for about less than ten seconds, for preventing said communication module from consuming additional power or from bringing in unnecessary consumption in other aspects, where both the additional power and the unnecessary consumption in other aspects are caused from the fact that the communication module searches for available network services continuously.
Abstract:
A plurality of improved memory systems employing a phase detection system in conjunction with either a synchronous mirror delay or a delay-locked loop, and related methods of operation, are disclosed. The memory systems determine timing characteristics among multiple signals and, based upon those timing characteristics, vary which clock-related signal is output. The improvement relates in part to the incorporation of a clock divider that reduces the frequency of the clock signals utilized by the system. Due to the incorporation of the clock divider and an edge recovery device, attenuation, power dissipation and duty cycle distortion associated with propagation of the clock signal(s) are reduced. Further, the reduction in frequency of the clock signals allows for numerous differently-phased clock signals to be generated within the system, which allows for finer timing comparisons to be performed, thus allowing for finer selections to be made in relation to which clock-related signal is output.
Abstract:
A method of performing a scanning sequence for an ultrasound scan includes establishing a number of ultrasound beams to be transmitted during an ultrasound scan, establishing a pulse repetition interval to be used for performing the ultrasound scan, and establishing a number of firings of each of the ultrasound beams to be performed during the ultrasound scan. The method further includes performing a scanning sequence based on a processing of one or more parameters selected from the group consisting of the number of ultrasound beams, the pulse repetition interval, and the number of firings of the ultrasound beams, wherein the processing of the one or more parameters is configured to provide a continuous interleaving in the transmitted beams thereby avoiding a generation of beam interleaving discontinuities and a formation of artifacts in a resulting image.