Abstract:
An insulated-gate field-effect transistor utilizes local threshold-adjust doping to control the voltage at which the transistor turns on. The local threshold-adjust doping is present along part, but not all, of the lateral extent of the channel. In the transistor structure, a channel zone laterally separates a pair of source/drain zones. The channel zone is formed with a main channel portion and a more heavily doped threshold channel portion that contains the local threshold-adjust doping. Gate dielectric material vertically separates the channel zone from an overlying gate electrode. The transistor is a long device in that the gate electrode is longer, preferably at least 50% longer, than the gate electrode of a minimum-sized transistor whose gate length is approximately the minimum feature size. The long-gate transistor is suitable for use in analog and high-voltage digital portions of a VLSI circuit.
Abstract:
An insulated gate semiconductor device contains a common drain and a plurality of cells, each having a body region and a source. In each cell, the body region contains a channel region extending between the common drain and the source. The body region further includes a special portion spaced apart from the channel region, more heavily doped than the portion of the body region below the source, extending no more than an electrically insignificant amount below the source, and not extending significantly deeper below the upper semiconductor surface than the portion of the body region underlying the source. The special portion of each body region provides improved ruggedness under drain avalanche conditions. The special portion of each body region normally reaches a peak net dopant concentration below the upper semiconductor surface. Instead of, or in addition to, having the special portion of each body region be subsurface-peaked, the portion of each body region below the source can extend deeper below the upper semiconductor surface than the portion of the body region underlying the special portion.
Abstract:
Power MOSFET apparatus, and method for its production, that suppresses voltage breakdown near the gate, using a polygon-shaped trench in which the gate is positioned, using a shaped deep body junction that partly lies below the trench bottom, and using special procedures for growth of gate oxide at various trench corners.
Abstract:
Power MOSFET apparatus, and method for its production, that suppresses voltage breakdown near the gate, using a polygon-shaped trench in which the gate is positioned in order to suppress oxide dielectric breakdown, using a shaped deep body junction that partly lies below the trench bottom to force voltage breakdown away from the trench surfaces and into the bulk of the semiconductor material, and using special procedures for growth of gate oxide at various trench corners.
Abstract:
An insulated-gate field-effect transistor (100) provided along an upper surface of a semiconductor body contains a pair of source/drain zones (240 and 242) laterally separated by a channel zone (244). A gate electrode (262) overlies a gate dielectric layer (260) above the channel zone. Each source/drain zone includes a main portion (240M or 242M) and a more lightly doped lateral extension (240E or 242E) laterally continuous with the main portion and extending laterally under the gate electrode. The lateral extensions, which terminate the channel zone along the upper semiconductor surface, are respectively largely defined by a pair of semiconductor dopants of different atomic weights. With the transistor being an asymmetric device, the source/drain zones constitute a source and a drain. The lateral extension of the source is then more lightly doped than, and defined with dopant of higher atomic weight, than the lateral extension of the drain.
Abstract:
A static induction transistor comprising: a region of semiconductor material having a first conductivity type; at least two spaced-apart gate regions formed in the region of semiconductor material, the gate regions having a second conductivity type that is opposite to the first conductivity type; at least one source region having the first conductivity type formed in the region of semiconductor material between the spaced-apart gate regions; a drain region having the first conductivity type formed in the region of semiconductor and spaced-apart from the source region to define a channel region therebetween; and a dielectric carrier separation layer formed at the periphery of the gate regions.
Abstract:
An asymmetric insulated-gate field effect transistor (100U or 102U) is provided along an upper surface of a semiconductor body so as to have first and second source/drain zones (240 and 242 or 280 and 282) laterally separated by a channel zone (244 or 284) of the transistor's body material. A gate electrode (262 or 302) overlies a gate dielectric layer (260 or 300) above the channel zone. A pocket portion (250 or 290) of the body material more heavily doped than laterally adjacent material of the body material extends along largely only the first of the S/D zones and into the channel zone. The vertical dopant profile of the pocket portion is tailored to reach a plurality of local maxima at respective locations (PH-1-PH-3-NH-3) spaced apart from one another. This typically enables the transistor to have reduced current leakage.
Abstract:
An insulated-gate field-effect transistor (100, 100V, 140, 150, 150V, 160, 170, 170V, 180, 180V, 190, 210, 210W, 220, 220U, 220V, 220W, 380, or 480) has a hypoabrupt vertical dopant profile below one (104 or 264) of its source/drain zones for reducing the parasitic capacitance along the pn junction between that source/drain zone and adjoining body material (108 or 268). In particular, the concentration of semiconductor dopant which defines the conductivity type of the body material increases by at least a factor of 10 in moving from that source/drain zone down to an underlying body-material location no more than 10 times deeper below the upper semiconductor surface than that source/drain zone. The body material preferably includes a more heavily doped pocket portion (120 or 280) situated along the other source/drain zone (102 or 262). The combination of the hypoabrupt vertical dopant profile below the first-mentioned source/drain zone, normally serving as the drain, and the pocket portion along the second-mentioned source/drain zone, normally serving as the source, enables the resultant asymmetric transistor to be especially suitable for high-speed analog applications.
Abstract:
An insulated-gate field-effect transistor (100, 100V, 140, 150, 150V, 160, 170, 170V, 180, 180V, 190, 210, 210W, 220, 220U, 220V, 220W, 380, or 480) is fabricated so as to have a hypoabrupt vertical dopant profile below one (104 or 264) of its source/drain zones for reducing the parasitic capacitance along the pn junction between that source/drain zone and adjoining body material (108 or 268). In particular, the concentration of semiconductor dopant which defines the conductivity type of the body material increases by at least a factor of 10 in moving from that source/drain zone down to an underlying body-material location no more than 10 times deeper below the upper semiconductor surface than that source/drain zone. The body material is preferably provided with a more heavily doped pocket portion (120 or 280) situated along the other source/drain zone (102 or 262). The combination of the hypoabrupt vertical dopant profile below the first-mentioned source/drain zone, normally serving as the drain, and the pocket portion along the second-mentioned source/drain zone, normally serving as the source, enables the resultant asymmetric transistor to be especially suitable for high-speed analog applications.
Abstract:
An extended-drain insulated-gate field-effect transistor (104 or 106) contains first and second source/drain zones 324 and 184B or 364 and 186B) laterally separated by a channel (322 or 362) zone constituted by part of a first well region (184A or 186A). A gate dielectric layer (344 or 384) overlies the channel zone. A gate electrode (346 or 386) overlies the gate dielectric layer above the channel zone. The first source/drain zone is normally the source. The second S/D zone, normally the drain, is constituted with a second well region (184B or 186B). A well-separating portion 186A or 186B/212U) of the semiconductor body extends between the well regions and is more lightly doped than each well region. The configuration of the well regions cause the maximum electric field in the IGFET's portion of the semiconductor body to occur well below the upper semiconductor surface, typically at or close to where the well regions are closest to each other. The IGFET's operating characteristics are stable with operational time.