Abstract:
A bypass valve for a combustor, including: a housing; an opening in the housing; a pneumatically actuated component within the housing; a passage coupling the opening in the housing and a duct of the combustor; a chamber formed by the housing and the pneumatically actuated component, the chamber containing a volume of air; and a control valve for controlling a pressure within the chamber to selectively displace the pneumatically actuated component to open and close the passage.
Abstract:
A hot gas path component includes a substrate having an outer surface and an inner surface. The inner surface of the substrate defines at least one interior space. At least a portion of the outer surface of the substrate includes a recess formed therein. The recess includes a bottom surface and a groove extending at least partially along the bottom surface of the recess. A cover is disposed within the recess and covers at least a portion of the groove. The groove is configured to channel a cooling fluid therethrough to cool the cover.
Abstract:
A component for a turbine engine includes a substrate that includes a first surface, and an insert coupled to the substrate proximate the substrate first surface. The component also includes a channel. The channel is defined by a first channel wall formed in the substrate and a second channel wall formed by at least one coating disposed on the substrate first surface. The component further includes an inlet opening defined in flow communication with the channel. The inlet opening is defined by a first inlet wall formed in the substrate and a second inlet wall defined by the insert.
Abstract:
A passive flow modulation device according to an embodiment includes: a temperature sensitive element disposed within a first area; a piston coupled to the temperature sensitive element, the piston extending through a wall to a second area, wherein the first area is at a higher temperature than the second area; and a valve arrangement disposed in the second area and actuated by a distal end portion of the piston, the valve arrangement tangentially injecting a supply of cooling air through an angled orifice from the second area into the first area in response an increase in temperature in the first area.
Abstract:
A system includes a gas turbine engine that includes a combustor section having one or more combustors configured to generate combustion products, a turbine section having one or more turbine stages between an upstream end and a downstream end, an exhaust section disposed downstream from the downstream end of the turbine section, and a fluid supply system coupled to the exhaust section. The one or more turbine stages are driven by the combustion products. The exhaust section has an exhaust passage configured to receive the combustion products as an exhaust gas. The fluid supply system is configured to route a cooling gas to the exhaust section. The cooling gas has a temperature lower than the exhaust gas. The cooling gas includes an extracted exhaust gas, a gas separated from the extracted exhaust gas, carbon dioxide, carbon monoxide, nitrogen oxides, or a combination thereof.
Abstract:
A method for providing micro-channels in a hot gas path component includes forming a first micro-channel in an exterior surface of a substrate of the hot gas path component. A second micro-channel is formed in the exterior surface of the hot gas path component such that it is separated from the first micro-channel by a surface gap having a first width. The method also includes disposing a braze sheet onto the exterior surface of the hot gas path component such that the braze sheet covers at least of portion of the first and second micro-channels, and heating the braze sheet to bond it to at least a portion of the exterior surface of the hot gas path component.
Abstract:
A thermal valve is disclosed. The thermal valve may provide one or more flows of cooling fluid to a hot cavity within a cooling circuit of a gas turbine engine. The thermal valve may include a temperature sensitive element and a valve assembly in communication with the temperature sensitive element. The valve assembly may include at least one inlet in fluid communication with at least one cooling fluid source, at least one outlet in fluid communication with the hot cavity, and at least one valve in communication with the temperature sensitive element. The at least one valve may be disposed between the at least one inlet and the at least one outlet. The temperature sensitive element may be configured to move the at least one valve between a closed position and an open position.
Abstract:
A passive flow modulation device according to an embodiment includes: a pressure sensitive main valve controlling a flow of a cooling fluid from a first area to a second area through an orifice; and a temperature sensitive pilot valve coupled to the pressure sensitive main valve, the temperature sensitive pilot valve configured to open at a predetermined temperature in the first area, causing a pressurization of the pressure sensitive main valve, wherein the pressurization of the pressure sensitive main valve actuates the pressure sensitive main valve to an open position, allowing the cooling fluid to flow from the first area to the second area through the orifice.
Abstract:
An auto thermal valve (ATV) for dual mode passive cooling flow modulation according to an embodiment includes: a gas flow inlet port; a gas flow outlet port; a temperature dependent expandable element; a rod coupled to the temperature expandable element; and a valve disc coupled to a distal end of the rod, the temperature dependent expandable element displacing the valve disc in response to a change in temperature; wherein the valve disc is displaced away from a valve seat by the temperature dependent expandable element at temperatures above and below a range of temperatures to allow a flow of cooling gas to pass from the gas flow inlet port to the gas flow outlet port.
Abstract:
A bypass valve for a combustor, including: a housing; an opening in the housing; a pneumatically actuated component within the housing; a passage coupling the opening in the housing and a duct of the combustor; a chamber formed by the housing and the pneumatically actuated component, the chamber containing a volume of air; and a control valve for controlling a pressure within the chamber to selectively displace the pneumatically actuated component to open and close the passage.