Abstract:
A method of making a part by an additive manufacturing process includes the steps of: (a) supporting a build platform on a support surface; (b) traversing a powder dispenser positioned above the support surface across the build platform, while dispensing powder from the powder dispenser, so as to deposit the powder over the build platform; (c) traversing the build platform with a scraper to scrape the deposited powder, so as to form a layer increment of powder; (d) using a directed energy source to fuse the layer increment of powder in a pattern corresponding to a cross-sectional layer of the part; and (e) repeating in a cycle steps (b) through (d) to build up the part in a layer-by-layer fashion.
Abstract:
The present disclosure generally relates to methods for additive manufacturing (AM) that utilize rail support structures in the process of building objects, as well as novel rail support structures to be used within these AM processes. The rail support structures include a plurality of substantially parallel vertical walls, each wall extending substantially parallel to a direction from the first side to the second side. Adjacent walls of the plurality of substantially parallel vertical walls are separated by a portion of unfused powder. An object is formed above the plurality of substantially parallel vertical walls.
Abstract:
In one an exemplary aspect of the present disclosure, an engine includes a drive shaft; an electric machine including a stator assembly and a rotor assembly, the rotor assembly rotatable relative to the stator assembly; and an electrical break, the drive shaft coupled to the rotor assembly through the electrical break.
Abstract:
An additive manufacturing apparatus includes: a coater including: at least one trough including a plurality of side-by-side deposition valves.
Abstract:
A nozzle for use in a combustor of a combustion turbine engine, the nozzle including: radial sections defined by sidewalls; a gap formed between opposing sidewalls of adjacent ones of the radial sections; a groove formed on each of the sidewalls that define the gap, the grooves positioned correspondingly so to together form a pocket; and a seal having a zigzagging profile disposed within the pocket. The pocket may intercept the gap over a seal length, and the seal may extend longitudinally within the pocket such that the zigzagging profile intersects the gap over the seal length.
Abstract:
A system and method for reducing modal coupling of combustion dynamics generally include multiple combustors, and each combustor includes multiple fuel nozzle groups for mixing fuel with a compressed working fluid prior to combustion. A fuel circuit is in fluid communication with each fuel nozzle, and orifice plates in the fuel circuit upstream from the fuel nozzles control the fuel split between the fuel nozzles in each combustor and/or between different combustors to produce a frequency difference between combustors.
Abstract:
An engine includes a combustion section and a fuel delivery system in fluid communication with the combustion section for providing fuel to the combustion section. The fuel delivery system includes a fuel oxygen reduction unit defining a circulation gas flowpath. The fuel oxygen reduction unit includes a gas oxygen reduction unit positioned in the circulation gas flowpath for reducing an oxygen content of a flow of stripping gas through the circulation gas flowpath and a pre-heater positioned in thermal communication with the circulation gas flowpath upstream of the gas oxygen reduction unit.
Abstract:
A method and system for distributed power generation is provided. The method includes determining an operational cycle for the system; determining an average energy requirement of the system based on the operational cycle; configuring a plurality of energy sources each corresponding to the load device to produce a peak efficiency corresponding to the average energy requirement of the system; and coupling the energy source to provide energy to the load device.
Abstract:
A fuel oxygen reduction unit for an aeronautical engine is provided. The fuel oxygen reduction unit includes a stripping gas line that provides a stripping gas flow and a plasma reactor in fluid communication with the stripping gas line. The plasma reactor includes a plasma reactor gas inlet that receives the stripping gas flow from the stripping gas line and a plasma reactor gas outlet that provides the stripping gas flow back to the stripping gas line, the plasma reactor configured to reduce a free oxygen content of the stripping gas flow such that an outlet free oxygen content of the stripping gas flow that exits the plasma reactor gas outlet is lower than an inlet free oxygen content of the stripping gas flow that enters the plasma reactor gas inlet.
Abstract:
A method and system for distributed power generation is provided. The method includes determining an operational cycle for the system; determining an average energy requirement of the system based on the operational cycle; configuring a plurality of energy sources each corresponding to the load device to produce a peak efficiency corresponding to the average energy requirement of the system; and coupling the energy source to provide energy to the load device.