Abstract:
A control system includes an energy management system and an isolation control system. The energy management system generates a trip plan that designates operational settings of a vehicle system having powered units that generate tractive effort to propel the vehicle system. The energy management system determines a tractive effort capability of the vehicle system and a demanded tractive effort of a trip. The energy management system identifies a tractive effort difference between the tractive effort capability of the vehicle system and the demanded tractive effort of the trip and selects at least one of the powered units based on the tractive effort difference. The isolation module remotely turns the selected powered unit to an OFF mode such that the vehicle system is propelled along the route during the trip by the powered units other than the selected powered unit.
Abstract:
A method includes receiving, at a data hub onboard an asset, a new configuration file, a service program, and a software update of a software application of the asset from a remote location. The data hub includes a current configuration file that indicates a current configuration state of the software application. The new configuration file indicates an updated configuration state of the software application with the software update. The service program includes work instructions for applying the updated configuration state to the software application. The method includes displaying the current configuration file and the new configuration file onboard the asset using the data hub. The method also includes updating the software application with the updated configuration state according to the work instructions of the service program using the data hub.
Abstract:
A communication system and method for communicatively linking vehicles in a vehicle consist determine a vehicle identifier for a first remote vehicle included in a vehicle consist formed from a lead vehicle and at least the first remote vehicle. The system and method communicate a wireless linking message addressed to the vehicle identifier from the lead vehicle to the first remote vehicle, and establish a communication link between the lead vehicle and the first remote vehicle responsive to receipt of the wireless linking message at the first remote vehicle. The communication link is established such that movement of the first remote vehicle is remotely controlled from the lead vehicle via the communication link. The communication link is established without an operator entering the first remote vehicle.
Abstract:
A camera system and method capture image data with a camera, a data storage device electrically connected to the camera and configured to store the video data and/or a communication device electrically connected to the camera and configured to communicate the image data to a system receiver located remote from the camera. The system receiver may be located onboard a vehicle such that an operator can carry the camera off board the vehicle and communicate the image data back to the vehicle, when performing, for example, work on the vehicle or inspecting the vehicle or the environs of the vehicle.
Abstract:
A communication system and method for communicatively linking vehicles in a vehicle consist determine a vehicle identifier for a first remote vehicle included in a vehicle consist formed from a lead vehicle and at least the first remote vehicle. The system and method communicate a wireless linking message addressed to the vehicle identifier from the lead vehicle to the first remote vehicle, and establish a communication link between the lead vehicle and the first remote vehicle responsive to receipt of the wireless linking message at the first remote vehicle. The communication link is established such that movement of the first remote vehicle is remotely controlled from the lead vehicle via the communication link. The communication link is established without an operator entering the first remote vehicle.
Abstract:
An aerial system and method use a distance sensor to measure spatial distances between the distance sensor and plural vehicles in a vehicle system formed from the vehicles operably coupled with each other during relative movement between the distance sensor and the vehicle system. The spatial distances measured by the distance sensor are used to determine a size parameter of the vehicle system based on the spatial distances that are measured.
Abstract:
A system includes a router transceiver unit that is configured to be disposed on-board a vehicle system. The vehicle system may have at least a source vehicle and a separate linked vehicle that are communicatively linked with each other through a system network of the vehicle system. The router transceiver unit is configured to be communicatively coupled to a requesting operational component of the source vehicle and the system network. The router transceiver unit is also configured to receive a local data packet from the requesting operational component that is directed toward a target operational component of the linked vehicle. The router transceiver unit includes an encapsulation module that is configured to transform the local data packet into an in-tunnel data packet, wherein the local and in-tunnel data packets have different packet formats.
Abstract:
A system, in a vehicle consist including at least a fuel car operably connectable to a powered vehicle via a fuel distribution path, includes a communication module and a determination module. The communication module is configured to communicate via a first channel and a second channel. The second channel is associated with the fuel distribution path and is configured to communicate a status signal. The determination module is configured to associate the fuel distribution path with the powered vehicle based at least in part on at least one of the status signal or an acknowledgment message indicating receipt of the status signal.
Abstract:
A system, in a vehicle consist including at least a fuel car operably connectable to a powered vehicle via a fuel distribution path, includes a communication module and a determination module. The communication module is configured to communicate via a first channel and a second channel. The second channel is associated with the fuel distribution path and is configured to communicate a status signal. The determination module is configured to associate the fuel distribution path with the powered vehicle based at least in part on at least one of the status signal or an acknowledgment message indicating receipt of the status signal.
Abstract:
A camera system and method capture image data with a camera, a data storage device electrically connected to the camera and configured to store the video data and/or a communication device electrically connected to the camera and configured to communicate the image data to a system receiver located remote from the camera. The system receiver may be located onboard a vehicle such that an operator can carry the camera off board the vehicle and communicate the image data back to the vehicle, when performing, for example, work on the vehicle or inspecting the vehicle or the environs of the vehicle.