Abstract:
A method of heat-treating an additively-manufactured ferromagnetic component is presented. The additively-manufactured ferromagnetic component includes a metal alloy having iron and cobalt. The method of heat-treating is performed such that a saturation flux density of a heat-treated ferromagnetic component is greater than a saturation flux density of an as-formed ferromagnetic component. The heat-treated ferromagnetic component has a microstructure having an average grain size of substantially all grains in a range of about 0.1 micron to about 25 microns. A ferromagnetic component is also presented.
Abstract:
A method of heat-treating an additively-manufactured ferromagnetic component is presented and a related ferromagnetic component is presented. A saturation flux density of a heat-treated ferromagnetic component is greater than a saturation flux density of an as-formed ferromagnetic component. The heat-treated ferromagnetic component is further characterized by a plurality of grains such that at least 25% of the plurality of grains have a median grain size less than 10 microns and 25% of the plurality of grains have a median grain size greater than 25 microns.
Abstract:
A treatment process for treating an article including a superalloy having a degraded microstructure is presented. The process includes subjecting the article to a first heat-treatment including successively heating and cooling the article between a low-end temperature and a high-end temperature and subjecting the article to a second heat-treatment at a solution annealing temperature in a range of from about 80 degrees Fahrenheit below a gamma-prime solvus temperature of the superalloy to about 80 degrees Fahrenheit above the gamma-prime solvus temperature of the superalloy after performing the first heat-treatment. The low-end temperature is in a range of from about 1000 degrees Fahrenheit to about 1800 degrees Fahrenheit and the high-end temperature is in a range of from about 1900 degrees Fahrenheit to about 2250 degrees Fahrenheit.
Abstract:
A nickel-based braze alloy composition is described, including nickel, about 1 weight % to about 5 weight % boron (B); and about 1 weight % to about 20 weight % germanium (Ge). The composition is free of any silicon. Superalloy articles that contains a crack or other type of void or gap filled with the nickel-based braze alloy composition are also described, along with methods for filling such a gap. Related articles of manufacture and brazing processes to join metal components are also disclosed.
Abstract:
A braze alloy composition is disclosed, containing nickel, about 5% to about 40% of at least one refractory metal selected from niobium, tantalum, or molybdenum; about 2% to about 32% chromium; and about 0.5% to about 10% of at least one active metal element. An electrochemical cell that includes two components joined to each other by such a braze composition is also described. A method for joining components such as those within an electrochemical cell is also described. The method includes the step of introducing a braze alloy composition between a first component and a second component to be joined, to form a brazing structure. In many instances, one component is formed of a ceramic, while the other is formed of a metal or metal alloy.