Abstract:
This disclosure relates to systems and methods for controlling a wind converter for a weak electrical grid. In one embodiment of the disclosure, a system for controlling the wind converter includes a wind converter connected to an electrical grid at a point of connection (POC) and operable to transfer a power to the electrical grid. The system includes a first control loop operable to calculate, based on electrical grid parameters and wind converter characteristics, a voltage reference to be generated by the wind converter. The system includes a second control loop to convert, based on the electrical grid parameters, the voltage reference into a current reference. The second loop converts the angle information of the voltage reference into a voltage at the POC. The system includes a third control to regulate, based at least on the current reference, the power transferred by the wind converter to the electrical grid.
Abstract:
A subsea power module includes an outer pressure compensated vessel defining an interior chamber and one or more heat generating electrical components disposed within the interior chamber. The outer pressure compensated vessel is configured to maintain a pressure within the interior chamber substantially the same as an ambient pressure outside the outer pressure compensated vessel. Each of the electrical components may be disposed within an inner chamber of a pressure vessel disposed within the interior chamber of the outer pressure compensated vessel. Each of the one or more heat generating electrical components is configured to transfer heat generated within the interior chamber of the outer pressure compensated vessel through the wall defining the interior chamber to a fluid, such as seawater, surrounding the outer pressure compensated vessel.
Abstract:
A power conversion system includes at least one multi-level power converter and a controller coupled to the at least one multi-level power converter. The controller includes a first CMV injection module and a second CMV injection module. The first CMV injection module generates a first CMV signal for modifying at least one voltage command to achieve a first function in association with operation of the power conversion system. The second CMV injection module generates a second CMV signal based at least in part on a three-level CMV limit either for modifying the at least one voltage command or for further modifying the at least one modified voltage command to achieve a second function in association with operation of the power conversion system.
Abstract:
A power distribution system for providing a desired value of voltage regulation is presented. The system includes at least one power source, at least one sink, a distribution feeder configured to couple the at least one power source to the at least one sink. The system includes a plurality of modular voltage regulation units coupled to the distribution feeder, where each of the plurality of modular voltage regulation units includes a transformer including a primary winding having a first end and a second end and a secondary winding having a first end and a second end; and at least one switch coupled to the primary winding of the transformer, where the first end of the secondary winding is coupled to at least one of the first and second ends of the primary winding via the at least one switch. A method of operating a power distribution system is also presented.
Abstract:
A common mode choke includes at least two groups of multi-phase coils wound on a magnetic core for balancing differential mode inductance between the phases. The multi-phase coils in each group are series connected and concentrically wound on a respective portion of the magnetic core. Each group of multi-phase coils is non-overlapping with each other group of multi-phase coils.
Abstract:
An electrical circuit for a power converter includes a first switching device proximate an AC source. The circuit also includes a voltage measurement device proximate a DC link and extends between the AC source and the DC link. The circuit further includes a DC voltage source and a first capacitive device. The first capacitive device is positioned between the first switching device and the voltage measurement device. The circuit further includes a second switching device positioned between the first capacitive device and the voltage measurement device. The circuit also includes a controller operatively coupled to the DC voltage source, the voltage measurement device, and the switching devices. The controller is configured to open the second switching device when a measured voltage signal generated by the voltage measurement device is substantially representative of a reference voltage value.
Abstract:
An electromagnetic shielding structure includes a first shielding material disposed at a first location with respect to at least one radiation source and a second shielding material attached with the first shielding material by fastening means. The second shielding material is disposed at a second location with respect to the at least one electromagnetic radiation source so as to define a predetermined gap between the first shielding material and the second shielding material. The first shielding material shields at least part of first frequency electromagnetic radiations generated from the at least one electromagnetic radiation source and penetrating through the second shielding material and the predetermined gap. The second shielding material shields at least part of second frequency electromagnetic radiations generated from the at least one electromagnetic radiation source.
Abstract:
A submersible power distribution system is provided. The system includes at least one receptacle configured to be exposed to an underwater environment and a plurality of power conversion modules positioned within the at least one receptacle. Each of the plurality of power conversion modules includes a first enclosure configured to be exposed to the underwater environment, the first enclosure defining a first interior cavity configured to have a first pressure. Power conversion modules also include at least one second enclosure positioned within the first interior cavity. The at least one second enclosure defines a second interior cavity configured to have a second pressure that is lower than the first pressure. The at least one second enclosure is configured to restrict exposure of non-pressure-tolerant power electronics in the second interior cavity to the first pressure.
Abstract:
A method of operating a flying capacitor multilevel converter having a direct current link and a plurality of phase legs each having a plurality of flying capacitors includes employing redundant states to balance flying capacitor voltages by charging or discharging flying capacitors. The redundant states are employed by obtaining a load current of the flying capacitor multilevel converter. If a load current value is lower than a threshold value then a capacitor current of a phase terminal capacitor is utilized to determine redundant states else a load current direction is utilized to determine the redundant states.
Abstract:
A converter includes a first converter module and a second converter module coupled to the first converter module in a nested manner. Each of the first converter module and the second converter module includes a plurality of switch units. When the converter is operated to perform power conversion, at least two of the plurality of switch units is configured to be switched both in a complementary pattern and a non-complementary pattern.