Abstract:
Presented are manufacturing control systems for fabricating composite-material structures, methods for making/operating such systems, and resin transfer molding techniques for ameliorating race-tracking effects in fiber-reinforced polymer panels. A method for forming a composite-material construction includes confirming, via a system electronic control unit (ECU), that a fiber-based preform is placed in a mold cavity and that opposing mold segments of the molding apparatus are sealed together. A filler, such as a compressible bladder, a cluster of spring-biased pins, or a spray-chopped fiber bed, is introduced into a void between the fiber-based preform and a tool face of one mold segment to thereby eliminate an unwanted resin race track. The system ECU commands a resin pump to inject resin through a primary gate of the molding apparatus and into the mold cavity to thereby impregnate the fiber-based preform with the resin. One or more vents operate to evacuate air from the mold.
Abstract:
A method of mitigating galvanic corrosion on a vehicle is provided for use of metals with carbon containing composites. An electrically conductive material comprising a plurality of electrically conductive metallic particles and a polymer is applied to a corrosion susceptible region of an assembly having a carbon-reinforced composite and a metal. The electrically conductive material has an electrical conductivity of greater than or equal to about 1×10−4 S/m and serves as a sacrificial anode to mitigate or prevent corrosion of the metal in the assembly. Also provided are assemblies for a vehicle having reduced galvanic corrosion that include a metal component in contact with a carbon-reinforced composite, which defines a corrosion susceptible region having an electrically conductive material disposed therein.
Abstract translation:提供了一种减轻车辆电偶腐蚀的方法,用于使用含碳复合材料的金属。 将包含多个导电金属颗粒和聚合物的导电材料施加到具有碳增强复合材料和金属的组件的易腐蚀区域。 导电材料具有大于或等于约1×10 -4 S / m的电导率,并且用作牺牲阳极以减轻或防止组件中的金属腐蚀。 还提供了一种用于具有降低的电偶腐蚀的车辆的组件,其包括与碳增强复合材料接触的金属部件,其限定了具有设置在其中的导电材料的易腐蚀区域。
Abstract:
The present application discloses a method of making a preform for use in manufacturing a component made of a composite material. The method includes stitching fibers onto a film to form a fiber bed in a two-dimensional shape, removing the film from the fiber bed, and adjusting the fiber bed into a three-dimensional shape to form the preform.
Abstract:
A mold for molding a reinforced preform having at least two apertures therein includes first and second mold halves, first and second emitters disposed in the mold halves and configured to emit light therefrom, first and second receivers disposed in the mold halves and configured to receive light from the respective first and second emitters, and first and second moving members having couplings for connection with side portions of the reinforced preform and actuators for moving the couplings between respective first and second positions. A controller determines an alignment condition based on signals received from the receivers. If the alignment condition fails to meet predetermined criteria, then at least one of the actuators is caused to move its coupling from its respective first position to a respective adjusted position that is different from the respective second position.
Abstract:
A composite fusion filament is disclosed that includes a polymer encasement and one or more mesogenic reinforcement bodies contained within the polymer encasement. The polymer encasement is comprised of a thermoplastic polymer, which has a melting temperature, and each of the one or more mesogenic reinforcement bodies is comprised of a thermotropic liquid crystal polymer, which has a clearing temperature. The melting temperature of the thermoplastic polymer included in the polymer encasement is less than the clearing temperature of the thermotropic liquid crystal polymer included in the one or more mesogenic reinforcement bodies. Additionally, the thermotropic liquid crystal polymer of each mesogenic reinforcement body has a plurality of organized crystalline fibrils that are aligned lengthwise along a longitudinal axis of the polymer encasement. A method of using the composite fusion filament to form a bond with a substrate that includes a thermoplastic polymer is also disclosed.
Abstract:
Presented are hybrid metal and fiber-reinforced polymer (FRP) composite wheels for vehicle wheel assemblies, methods for making/using such wheels, and motor vehicles equipped with such wheels. A wheel for a motor vehicle wheel assembly includes a wheel face with multiple spokes that are circumferentially spaced about and project radially outward from a central hub. The central hub rotatably attaches to the vehicle's body, e.g., via a corner module. The wheel face is fabricated, e.g., as a one-piece structure, from an FRP material. A wheel barrel, which circumscribes the wheel face, includes an annular rim that mounts thereon an inflatable tire. The wheel barrel is fabricated, e.g., as a one-piece structure, from a metallic material. Multiple overmold through holes and/or inset tabs are circumferentially spaced about the annular rim. The FRP material extends through and/or surrounds the overmold through holes/inset tabs and thereby mounts the wheel face to the wheel barrel.
Abstract:
An energy-absorbing assembly includes a housing and a plurality of discrete energy-absorbing elements. The housing includes a first wall and a second wall. The first wall and the second wall are spaced apart from one another to at least partially define an interior compartment. Each element of the plurality of energy-absorbing elements includes a polymer and a plurality of reinforcing fibers. The plurality of energy-absorbing elements is at least partially disposed within the interior compartment and fixed to the housing. Each energy-absorbing element of the plurality of energy-absorbing elements includes an elongated hollow structure extending between a first end and a second end. Each elongated hollow structure defines a longitudinal axis extending nonparallel to at least one of the first wall and the second wall. In various alternative aspects, each energy-absorbing element may include a transverse wall.
Abstract:
A mold for molding a reinforced preform having at least two apertures therein includes first and second mold halves arranged with their respective first and second molding surfaces facing each other. A first emitter is disposed in the first mold half and is configured to emit light therefrom. A first receiver is disposed in the second mold half and is configured to receive light from the first emitter and produce a first signal indicative of the light received from the first emitter. A second emitter is disposed in one of the first and second mold halves and is configured to emit light therefrom. A second receiver is disposed in the other of the first and second mold halves and is configured to receive light from the second emitter and produce a second signal indicative of the light received from the second emitter.
Abstract:
A composite fusion filament is disclosed that includes a polymer encasement and one or more mesogenic reinforcement bodies contained within the polymer encasement. The polymer encasement is comprised of a thermoplastic polymer, which has a melting temperature, and each of the one or more mesogenic reinforcement bodies is comprised of a thermotropic liquid crystal polymer, which has a clearing temperature. The melting temperature of the thermoplastic polymer included in the polymer encasement is less than the clearing temperature of the thermotropic liquid crystal polymer included in the one or more mesogenic reinforcement bodies. Additionally, the thermotropic liquid crystal polymer of each mesogenic reinforcement body has a plurality of organized crystalline fibrils that are aligned lengthwise along a longitudinal axis of the polymer encasement. A method of using the composite fusion filament to form a bond with a substrate that includes a thermoplastic polymer is also disclosed.
Abstract:
Compression molding methods for improving the durability and weatherability of a composite material are provided. The methods include disposing a protective surface film on a composite material; adhering the protective surface film to the composite material; and compression molding the protective surface film. The composite material comprises a thermoplastic polymer and a reinforcement material. The protective surface film comprises at least one stabilizer that minimizes or prevents degradation of the underlying composite material when exposed to ultraviolet radiation and/or heat. The composite material may be heated in an oven having an environment comprising oxygen. The protective surface film may be disposed on the composite material prior to the composite material entering the oven; while the composite material is in the oven; or after the composite material exits the oven.