Abstract:
A display system includes a display device and a graphics processing unit (GPU) coupled via at least one physical layer. The display device includes a pixel array having a non-red-green-blue (non-RGB) pixel format. The GPU is configured to render an image in the non-RGB pixel format and provide the rendered image for transmission to the pixel array via the at least one physical layer.
Abstract:
Techniques and mechanisms for displaying an image with structures of a pixel array. In an embodiment, pixels of the pixel array each include three chrominance elements and a fourth luminance element. Of the four elements of a given pixel, a first subset of the elements are aligned along a first line, a second subset of the elements are aligned along a second line offset from the first line, and a third subset of the elements are aligned along a third line extending athwart the first line and the second line, wherein two of the elements are located on opposite sides of the third subset. In another embodiment, image data processing, for displaying an image with the pixel array, includes updating luminance parameters of a plurality of pixel data sets independent of any evaluation to update one or more types of chrominance parameters of the plurality of pixel data sets.
Abstract:
A method for aligning optical layers of a multi-layer display includes displaying a dark screen image on each of a plurality of transmissive pixel arrays separated from each other by spacing regions. The transmissive pixel arrays are disposed on a display layer of the multi-layer display. The display layer is illuminated with a plurality of illumination sources of an illumination layer disposed behind the display layer. Each of the illumination sources corresponds to one of the transmissive pixel arrays to illuminate the corresponding one of the transmissive pixel arrays. An illumination pattern is cast onto a screen layer disposed in front of the display layer. The illumination pattern includes bright regions due to overlapping illumination cast from adjacent ones of the transmissive pixel arrays. The bright regions of the illumination pattern cast onto the screen layer are analyzed to identify misalignments between the display layer and the illumination layer.
Abstract:
Techniques and mechanisms for displaying an image with structures of a pixel array. In an embodiment, pixels of the pixel array each include three chrominance elements and a fourth luminance element. Of the four elements of a given pixel, a first subset of the elements are aligned along a first line, a second subset of the elements are aligned along a second line offset from the first line, and a third subset of the elements are aligned along a third line extending athwart the first line and the second line, wherein two of the elements are located on opposite sides of the third subset. In another embodiment, image data processing, for displaying an image with the pixel array, includes updating luminance parameters of a plurality of pixel data sets independent of any evaluation to update one or more types of chrominance parameters of the plurality of pixel data sets.
Abstract:
Embodiments of the disclosure describe a tileable display panel including a screen layer to display a unified image, an illumination layer including a two-dimensional array of lamps, and a display layer disposed between the screen layer and illumination layer. The display layer includes a plurality of pixelets each positioned to be illuminated by a corresponding lamp from the illumination layer to project a magnified image sub-portion corresponding to a received subset. The magnified image sub-portions collectively blend together to form the unified image displayed on the screen layer. Embodiments of the disclosure further include illumination layer control logic to determine a brightness value of each of the received subsets of pixel data, and adjust an illumination setting to reduce or increase an illumination output of a lamp in the illumination layer based, at least on part, on the brightness values of the corresponding subset of pixel data.
Abstract:
A display tile for arranging with other display tiles to form a multi-tile display includes display pixels in an active display area, pixel tape sections, and a transparent layer. The pixel tape sections surround the display pixels. Each pixel tape section overlaps an adjacent pixel tape section and is overlapped by another adjacent pixel tape section disposed opposite the adjacent pixel tape section. Each pixel tape section includes a pixel array. The transparent layer is disposed over the display pixels and the pixel arrays of the pixel tape sections. The display pixels and the pixel arrays are arranged to display an overall image of the display tile.
Abstract:
A display panel includes an array of display pixels to output an image. The array of display pixels includes a central pixel region and a perimeter pixel region. The central pixel region includes central pixel units each having three different colored sub-pixels. The different colored sub-pixels of the central pixel units are organized according to a central layout pattern that repeats across the central pixel region. The perimeter pixel region is disposed along a perimeter of the central pixel region and includes perimeter pixel units that increase a brightness of the image along edges of the central pixel region to mask gaps around the array of display pixels when tiling the array of display pixels with other arrays of display pixels.
Abstract:
A tileable display panel includes an illumination layer, a display layer, and a screen layer. The display layer is disposed between the screen layer and the lamp layer and includes pixelets. Each of the pixelets is positioned to be illuminated by lamp light from the illumination layer and to project a magnified image sub-portion onto the screen layer such that the magnified image sub-portions collectively blend together to form a unified image on the screen layer. Each of the pixelets includes core pixels and peripheral pixels surrounding the core pixels on one or more sides which provide a higher image resolution in overlap regions on the screen layer when the magnified image sub-portions overlap on the screen layer.
Abstract:
A display panel includes a carrier substrate, a system interconnect, and a plurality of display modules disposed across the carrier substrate. The display modules are each communicatively coupled to the system interconnect to each output a different portion of an overall image communicated via the system interconnect. Each of the display modules includes an array of direct emission display pixels and a module interconnect to couple the array of direct emission display pixels to the system interconnect. The array of direct emission display pixels of a given display module of the plurality of display modules is distinct and separate from the array of direct emission display pixels of other display modules of the plurality of display modules.
Abstract:
Techniques and mechanisms for determining misalignment of one or more tileable display panels. In an embodiment, a plurality of images are processed to create a super-resolution image of the one or more tileable display panels. The super-resolution image may be processed to recognize one or more features indicating misalignment in a reference image displayed by the one or more tileable display panels. In another embodiment, the one or more features are evaluated based on fiducial data to generate a signal indicating an adjustment to be made to a first tileable display panel.