Abstract:
Methods and nodes, for communication of a receiver-specific control channel signal within a wireless communication system, to be received by a receiver, wherein receiver-specific downlink control channel signals are scheduled for transmission over sets of Physical Resource Block pairs.
Abstract:
The present disclosure discloses a method and an apparatus for resource mapping and code division multiplexing. In the present disclosure, each cell selects a mapping scheme among at least two mapping schemes to implement resource mapping, which effectively reduces interference imposed on reference signal symbols of users at the edge of a cell; vector switching is performed for an orthogonal matrix to obtain multiple different codeword sequences and implement codeword design, so that a problem that the output power of reference signal symbols is unbalanced can be effectively alleviated.
Abstract:
A method and an apparatus for sending a Precoding Matrix Index (PMI) and performing precoding are provided in the embodiments of the present invention. The method for sending the PMI comprises the following steps: a user equipment acquires the transmission channel capability of carrying the PMI; according to the transmission channel capability of carrying the PMI, the precoding matrices are selected from a locally-stored first codebook set to form a second codebook set; a first precoding matrix is selected from the second codebook set; an index corresponding to the first precoding matrix is sent to a base station over the transmission channel so as to make the base station can find out the first precoding matrix according to the index and precode the data according to the first precoding matrix. The embodiments of the present invention can realize the flexible configuration and use of the PMI.
Abstract:
The present disclosure discloses a method and an apparatus for resource mapping and code division multiplexing. In the present disclosure, each cell selects a mapping scheme among at least two mapping schemes to implement resource mapping, which effectively reduces interference imposed on reference signal symbols of users at the edge of a cell; vector switching is performed for an orthogonal matrix to obtain multiple different codeword sequences and implement codeword design, so that a problem that the output power of reference signal symbols is unbalanced can be effectively alleviated.
Abstract:
A method and an apparatus for sending a Precoding Matrix Index (PMI) and performing precoding are provided in the embodiments of the present invention. The method for sending the PMI comprises the following steps: a user equipment acquires the transmission channel capability of carrying the PMI; according to the transmission channel capability of carrying the PMI, the precoding matrices are selected from a locally-stored first codebook set to form a second codebook set; a first precoding matrix is selected from the second codebook set; an index corresponding to the first precoding matrix is sent to a base station over the transmission channel so as to make the base station can find out the first precoding matrix according to the index and precode the data according to the first precoding matrix. The embodiments of the present invention can realize the flexible configuration and use of the PMI.
Abstract:
The present disclosure provides a solution which solves the problem of demodulation reference signal (DMRS) ambiguity by introducing separate, i.e. different DMRSs. This is especially the case for systems employing dynamic allocation of control and data signals to different PRBs.
Abstract:
Embodiments provide a method for sending a signal by user equipment and user equipment. The method includes: within an obtained channel detection cycle, detecting a first interference strength within system bandwidth and a second interference strength on each sub-band within the system bandwidth; comparing the first interference strength with a first interference threshold; if the first interference strength is less than the first interference threshold, selecting, from the system bandwidth according to the second interference strength on each sub-band within the system bandwidth, N first sub-bands that receive relatively small interference; and sending a signal on the N first sub-bands. In consideration of interference within the entire bandwidth and interference to each sub-band, when interference to the entire system is relatively small, a transmission collision is avoided. In addition, selecting sub-bands that receive small interference for signal transmission further reduces transmission interference, thereby effectively improving data transmission reliability.
Abstract:
The present disclosure provides a solution which solves the problem of demodulation reference signal (DMRS) ambiguity by introducing separate, i.e. different DMRSs. This is especially the case for systems employing dynamic allocation of control and data signals to different PRBs.
Abstract:
Methods and apparatus are provided for transmitting channel quality information. User equipment receives a control signaling for uplink scheduling. The control signaling for uplink scheduling includes at least one modulation and coding scheme (MCS) field, a channel quality information request field, and a resource block allocation field indicating the number of resource blocks (RBs), NRB, allocated to the user equipment for transmitting the channel quality information. When the channel quality information of multiple downlink carriers is requested, the user equipment transmits only the channel quality information on the uplink shared channel according to the allocated RBs if: the MCS bit field corresponding to one transport block indicates a MCS corresponding to a retransmitted data packet; the request bit field indicates a request for the channel quality information; and the NRB is equal to or less than 4*N, wherein N is a positive integer and corresponds to the number of multiple downlink carriers.
Abstract:
Methods and apparatus are provided for transmitting channel quality information. User equipment receives a control signaling for uplink scheduling. The control signaling for uplink scheduling includes at least one modulation and coding scheme (MCS) field, a channel quality information request field, and a resource block allocation field indicating the number of resource blocks (RBs), NRB, allocated to the user equipment for transmitting the channel quality information. When the channel quality information of multiple downlink carriers is requested, the user equipment transmits only the channel quality information on the uplink shared channel according to the allocated RBs to the base station if: the MCS bit field corresponding to one transport block indicates a MCS corresponding to a retransmitted data packet; the request bit field indicates a request for the channel quality information; and the NRB is equal to or less than a threshold which is related to the number of the downlink carriers and a maximum number of RBs which can be allocated for transmitting only the channel quality of one downlink carrier.