Abstract:
A method of vertically aligning carbon nanotubes, whereby carbon nanotubes are grown on a substrate on which a catalyst metallic layer is formed, the grown carbon nanotubes are separated from the substrate in a bundle shape, the separated carbon nanotube bundles is put in an electrolyte having a charger, the carbon nanotube bundles are mixed with the charger to charge the carbon nanotube bundles, and the charged carbon nanotube bundles are vertically attached onto a surface of an electrode, using electrophoresis.
Abstract:
A super-hydrorepellent coating composition including a nano structure, polyorganosiloxane, a cross-linker, and a catalyst; a super-hydrorepellent coating layer including a cured product of the super-hydrorepellent coating composition; and a heat exchanger including the super-hydrorepellent coating layer.
Abstract:
A method of growing carbon nanotubes and a method of manufacturing a field emission device using the same is provided. The method of growing carbon nanotubes includes steps of preparing a substrate, forming a catalyst metal layer on the substrate to promote growing of carbon nanotubes, forming an inactivation layer on the catalyst metal layer to reduce the activity of the catalyst metal layer, and growing carbon nanotubes on a surface of the catalyst metal layer. Because the inactivation layer partially covers the catalyst metal layer, carbon nanotubes are grown on a portion of the catalyst metal layer that is not covered by the inactivation layer. Thus, density of the carbon nanotubes can be controlled. This method for growing carbon nanotubes can be used to make an emitter of a field emission device. The field emission device having carbon nanotube emitter made of this method has superior electron emission characteristics.
Abstract:
A super-hydrorepellent coating composition including a nano structure, polyorganosiloxane, a cross-linker, and a catalyst; a super-hydrorepellent coating layer including a cured product of the super-hydrorepellent coating composition; and a heat exchanger including the super-hydrorepellent coating layer.
Abstract:
A method of growing carbon nanotubes and a method of manufacturing a field emission device using the same is provided. The method of growing carbon nanotubes includes steps of preparing a substrate, forming a catalyst metal layer on the substrate to promote growing of carbon nanotubes, forming an inactivation layer on the catalyst metal layer to reduce the activity of the catalyst metal layer, and growing carbon nanotubes on a surface of the catalyst metal layer. Because the inactivation layer partially covers the catalyst metal layer, carbon nanotubes are grown on a portion of the catalyst metal layer that is not covered by the inactivation layer. Thus, density of the carbon nanotubes can be controlled. This method for growing carbon nanotubes can be used to make an emitter of a field emission device. The field emission device having carbon nanotube emitter made of this method has superior electron emission characteristics.
Abstract:
In a method of forming carbon nanotubes (CNTs) and a method of manufacturing a field emission display (FED) device using the CNTs, the method includes preparing a substrate on which a silicon layer is formed, sequentially forming a buffer layer and a catalyst metal layer on the silicon layer, partly forming metal silicide domains by diffusion between the silicon layer, the buffer layer and the catalyst metal layer by annealing the substrate, and growing CNTs on a surface of the catalyst metal layer.
Abstract:
In a method of forming carbon nanotubes (CNTs) and a method of manufacturing a field emission display (FED) device using the CNTs, the method includes preparing a substrate on which a silicon layer is formed, sequentially forming a buffer layer and a catalyst metal layer on the silicon layer, partly forming metal silicide domains by diffusion between the silicon layer, the buffer layer and the catalyst metal layer by annealing the substrate, and growing CNTs on a surface of the catalyst metal layer.
Abstract:
A Field Emission Device (FED) having a ring-shaped emitter and its method of manufacture includes a ring-shaped emitter formed on a cathode exposed through an aperture of a gate electrode, has a shape corresponding to a shape of the aperture of the gate electrode, and has carbon nanotubes on edges thereof. The ring-shaped emitter is formed through an annealing process that controls the diffusion of a catalyst metal and silicon between a catalyst metal layer and a silicon layer.