摘要:
Methods and apparatus are provided for forming thin films for semiconductor devices, which enable supplying and removing reactants containing constituent elements of a thin film to be formed, by preheating and supplying a process gas and a purging gas at a predetermined temperature in forming the thin film on a substrate. For example, a method for forming a thin film includes supplying a first reactant to a chamber to chemically adsorb the first reactant onto a substrate, the first reactant being bubbled by a first gas that is preheated, purging the chamber to remove residues on the substrate having the first reactant chemically adsorbed, and forming the thin film by a means of chemical displacement by supplying a second reactant to the chamber to chemically adsorb the second reactant onto the substrate.
摘要:
In a method for forming a gate electrode having an excellent sidewall profile, after a gate structure is formed on a substrate, a first oxide film is formed on a sidewall of the gate structure and on the substrate by re-oxidizing the gate structure and the substrate under an atmosphere including an oxygen gas and an inert gas. The gate structure has a gate oxide film pattern, a polysilicon film pattern and a metal silicide film pattern. A portion of the first oxide film formed on a sidewall of the polysilicon film pattern has a thickness substantially identical to that of a portion of the first oxide film formed on a sidewall of the metal silicide film pattern. A failure of a semiconductor device having the gate electrode can be minimized because the gate electrode has an improved sidewall profile.
摘要:
A first gate oxide layer pattern having a first thickness is formed in a first region of a substrate and a second gate oxide layer having a second thickness is formed in a second region of a substrate. A surface of the second gate oxide layer is selectively nitrified to form an oxynitride layer, thereby reducing a depletion effect of a poly gate and a fluctuation of threshold voltage.
摘要:
A plasma enhanced chemical vapor deposition apparatus and a method of forming a nitride layer using the same, wherein the plasma enhanced CVD apparatus includes a process chamber including an upper chamber with a dome shape, a lower chamber, and an insulator therebetween, a gas distributing ring, a susceptor for supporting a wafer and heating the process chamber, a plasma compensation ring surrounding the susceptor, a vacuum pump and an electric power source connected to the process chamber. The gas distributing ring has a plurality of upwardly inclined nozzles, allowing upward distribution of reactive gases. The method of forming a nitride layer includes forming a protective film on inner walls of a process chamber, the protective film having at least two layers of differeing dielectric constant, and sequentially supplying reactive gases to the process chamber. A nitride layer formed thereby has low hydrogen content, good density and oxidation resistance.