摘要:
A process for producing molten iron with a combination of a moving-hearth reducing furnace and an iron bath-type melting furnace includes a step of charging a bedding carbonaceous material having an average particle diameter of 1 to 5 mm on a hearth of the moving-hearth reducing furnace and placing carbonaceous material-containing agglomerates containing a powdery iron oxide source and a powdery carbonaceous reductant on the bedding carbonaceous material; a step of thermally reducing the carbonaceous material-containing agglomerates while moving the hearth in the moving-hearth reducing furnace to generate solid reduced iron and simultaneously thermally carbonizing the bedding carbonaceous material to generate char; a step of continuously charging the solid reduced iron and the char into the iron bath-type melting furnace from thereabove without substantial cooling; and a step of blowing oxygen-containing gas into the iron bath-type melting furnace to melt the solid reduced iron and to thereby generate molten iron. According to this method, the amount of carbonaceous materials scattered into discharge gas can be significantly reduced and the yield of carbonaceous materials of the whole process can be improved.
摘要:
In order to ensure favorable sensitivity at the time of tilt driving and realize reduction in size, there is provided an optical pickup and a disc drive having therein an optical lens drive including a stationary block fixed to a moving base, a movable block operated in a focusing direction, a tracking direction and a tilting direction and for holding said objective lens, a supporting spring for connecting the stationary block and the movable block, a coil assembly having therein a focusing coil, tracking coils and tilt coils to be respectively energized when said movable block is operated in the focusing direction, the tracking direction, and the tilting direction connected together, and magnets constituting a magnetic circuit together with each of said coils, and the tilt coils are disposed at a position where at least a part thereof overlaps with the focusing coil in the focusing direction.
摘要:
A method for producing an iron oxide pellet including the steps of adding water to a raw material mixture comprising iron oxide which serves as a primary component, a carbonaceous material in an amount sufficient for reducing the iron oxide, an organic binder in an amount sufficient for binding the iron oxide and the carbonaceous material, and an inorganic coagulant in an amount of not less than 0.05 mass % and less than 1 mass %; pelletizing the resultant mixture to thereby obtain a green pellet; and drying the green pellet until the moisture content is reduced to equal to or less than 1.0 mass %. The thus-produced iron oxide pellet is charged in a reducing furnace for reduction to thereby obtain a reduced iron pellet.
摘要:
A method of producing reduced metals is disclosed in which a mixture of a metal oxide and a reducing agent is heated by a burner such that the metal oxide is reduced to a reduced metal. Dry-distilled gas generated during carbonization of an organic matter-containing component is used as fuel for the burner. The sensible heat of exhaust gas evolved by the burner is utilized as heat for carbonizing the organic matter-containing component. Carbide derived by carbonizing the organic matter-containing component is used as the above reducing agent. This method yields excellent cost performance. An apparatus for reducing metal oxides is also disclosed.
摘要:
A method for producing an iron oxide pellet including the steps of adding water to a raw material mixture comprising iron oxide which serves as a primary component, a carbonaceous material in an amount sufficient for reducing the iron oxide, an organic binder in an amount sufficient for binding the iron oxide and the carbonaceous material, and an inorganic coagulant in an amount of not less than 0.05 mass % and less than 1 mass %; pelletizing the resultant mixture to thereby obtain a green pellet; and drying the green pellet until the moisture content is reduced to equal to or less than 1.0 mass %. The thus-produced iron oxide pellet is charged in a reducing furnace for reduction to thereby obtain a reduced iron pellet.
摘要:
A moving hearth reducing furnace is operated, while a gap is provided between a discharging apparatus for discharging reduced iron agglomerates from the moving hearth reducing furnace and the surface of the moving hearth. The gap prevents squeezing metallic iron powder formed by reduction of powder included in iron oxide agglomerates into the surface of the moving hearth and the formation of an iron sheet. An iron oxide layer formed on the moving hearth during the operation can be periodically scraped off without shutdown of the furnace.
摘要:
A method for the production of polytetramethylene ether glycol wherein polymerization of tetrahydrofuran in the presence of fluorosulfonic acid is followed by hydrolysis of the resulting polymer, characterized by(1) using the fluorosulfonic acid at 0.007-0.3 molar equivalents with respect to the tetrahydrofuran;(2) using in combination therewith fuming sulfuric acid which contains free sulfur trioxide at 0.05-1.0 molar equivalent with respect to the fluorosulfonic acid; and(3) adding said fuming sulfuric acid to the tetrahydrofuran prior to adding the fluorosulfonic acid thereto.According to the method, high quality polytetramethylene ether glycol with a low fluorine content may be obtained at a high yield without lowering the polymerization temperature. For example, PTMG may be obtained with 3 or fewer, and preferably 2 or fewer terminal fluorines per 2,000 termini of the resulting PTMG. As a result, when the resulting PTMG is used as a starting material for elastomers, it is possible to easily obtain a high molecular weight polymer with excellent heat resistance.
摘要:
The present invention relates to an electrostatic charging process for uniformly charging an image holding member such as a photoconductive or insulating drum. In an image forming apparatus in which such image holding member is driven both at a first speed and at a second speed different from said first speed, there results a phenomenon of uneven charging due to the difference between the start-up characteristic of charging performance of the charging means and the actual speed at the speed change-over of the image holding member. This drawback is prevented by the present invention in which the speed change-over time of the image holding member is selected different from the charging start time of the charging means in such a manner that the charging is initiated after the speed change-over.
摘要:
This specification discloses an invention relating to the relationship between a latent image bearing member such as screen-like photosensitive medium and a corona discharger used to form a latent image on the latent image bearing member. More particularly, the corona discharger is divided into a plurality of dischargers so that when the sum of the length of the corona discharger for the formation of the latent image and the length of the latent image bearing member is greater than the length in the direction of movement of an endless support member supporting the latent image bearing member, the plurality of dischargers may selectively discharge corona in accordance with the rotational position of the latent image bearing member. By this, the latent image bearing member may be prevented from being dually charged and the length of the latent image bearing member may be minimized to contribute to reduction in size of the image formation apparatus.
摘要:
The present invention provides a method for producing a high-quality reduced metal using an upgraded coal as a carbonaceous material to be incorporated. In the method, coal is first aged by heating in an organic solvent to produce upgraded coal for metallurgy having higher thermal plasticity than that of the coal. Then, a mixture of the upgraded coal for metallurgy and a metal oxide-containing raw material is agglomerated by an agglomerator, and the resultant agglomerates are reduced by heating in a furnace and then melted by further heating to produce a reduced melt. The reduced melt is cooled and solidified in the furnace to produce a reduced solid. The reduced solid is discharged to the outside of the furnace and slag is removed using a screen to recover a metal as a reduced metal.