Abstract:
A non-volatile semiconductor memory device according to the invention comprises a memory cell array having a plurality of non-volatile memory cells, and a write state machine controlling a voltage applied to a memory cell selected from the memory cell array and a voltage application period, in accordance with each of reading of data from the selected memory cell, writing of data into the selected memory cell, and erasing of data from the selected memory. The write state machine executes writing, under a first writing condition, on a predetermined number of memory cells included in the memory cell array, and executes writing on memory cells other than the predetermined number of memory cells, under a second writing condition set in accordance with a result of the writing executed under the first writing condition.
Abstract:
A semiconductor integrated circuit device according to the present invention includes a booster circuit 1 for raising an external power supply voltage Vccext, a level detecting circuit 2 for detecting fluctuation in a stepped-up voltage Vccint2, an internal voltage generating circuit 3 for generating an internal voltage Vccint on the basis of the stepped-up voltage Vccint2, an address buffer 4, an address decoder 5, and a memory cell array 6 of an EEPROM structure. The level detecting circuit 2 includes a first level detecting part for performing level detection during a memory access state, and a second level detecting part for performing level detection during a stand-by state. During the stand-by state, the internal voltage generating circuit 3 short-circuits the stepped-up voltage Vccint2 and the internal voltage Vccint. The second level detecting part has lower power consumption than that of the first level detecting part, so that it is possible to reducing the power consumption during the stand-by state without lowering the driving voltage.
Abstract:
According to one embodiment, a semiconductor memory device includes a plurality of blocks in a memory cell, each of the blocks acting as an erasure unit of data, the block including a plurality of pages, each of the pages including a plurality of memory cell transistors, each of the memory cell transistors being configured to be an erasure state or a first retention state based on a threshold voltage of the memory cell transistor, and a controller searching data in the block with respect to, writing a first flag denoting effective into a prescribed page of the block with the erasure state, and writing the first flag denoting non-effective into a prescribed page of the block with the first retention state, reading out the prescribed page of the block with the first retention state, and determining that the block is writable when the first flag denotes effective.
Abstract:
In writing operation, charge pumps of a memory apply any of first to n-th voltages which are different from each other. An application-voltage selector selects voltages to be applied to WLs among the first to n-th voltages. A word-line number register stores the number of WLs to which each of the first to n-th voltages is to be applied for the first to n-th voltages. A storage stores a correspondence table that stores a relationship between the number of WLs for each of the first to n-th voltages and the number of charge pumps allocated to the first to n-th voltages. A generation-voltage selector allocates charge pumps to generate the first to n-th voltages based on the correspondence table according to the number of WLs for each of the first to n-th voltages. Each charge pump generates any of the first to n-th voltages allocated by the generation-voltage selector.
Abstract:
A nonvolatile semiconductor memory device comprises: a memory cell array configured by a plurality of first and second lines and a plurality of memory cells, each of the memory cells being selected by the first and second lines and being configured to store multiple-bit data in a nonvolatile manner; a data bus configured to transmit write data to be written to the plurality of memory cells, the write data being configured by a plurality of unit data; a column selection unit configured by a plurality of data latches, each of the data latches being configured to directly receive the unit data inputted from the data bus and to retain the unit data; and a control unit configured to control activation/non-activation of the data latches. During a programming operation, for each unit data inputted to the column selection unit, the control unit activates one of the data latches corresponding to a certain one of the memory cells where the unit data is to be stored.
Abstract:
A memory system with a semiconductor memory device, in which a physical block of n-bits serves as an erase unit, wherein the address management of the memory device is performed by a logical block with m-bits, “m” being larger than “n” and expressed by a power of two, and wherein a n-bit portion continued from the head address in the logical block is defined as a first management unit corresponding to one physical block of the memory device, and a number of the remaining fraction portions each defined as a second management unit are gathered so as to correspond to one physical block of the memory device.
Abstract:
A nonvolatile semiconductor memory device according to one aspect of the present invention includes: a memory cell array provided to perform programming in page units; and a control circuit provided to control the programming. The control circuit includes: means that performs a first detection for memory cells in a part provided as a unit smaller than a page, concurrently with programming to memory cells to be written in a page; and means that subjects the memory cells in the page to a second detection that takes into consideration a failure relief due to a redundant region, when the number of memory cells of unwritten state in the part as detected by the first detection becomes equal to or less than a first constant, and that ends the program operation when the number of memory cells of unwritten state in the page becomes equal to or less than a second constant.
Abstract:
An ASIC includes a first-wire extended in a first-direction and a second-wire extended in a parallel direction to the first-wire and both are placed on a first-wire layer; and a third-wire placed on a second-wire layer above the first-wire layer and is extended above the wire and above the second-wire in a second-direction which intersects the first-direction and passing through a first via-hole is connected to the first-wire, and a fourth-wire separated from the third-wire extended in a parallel direction above the first-wire and above the second-wire and a fifth-wire separated from both the third-wire and the fourth-wire and extended in a parallel direction in a smallest space and passing through a second via-hole is connected to the second-wire, wherein, one end of the fifth-wire is extended to the center between the second-wire and the first-wire from above the second-wire.
Abstract:
The non-volatile semiconductor memory device has a circuit which maintains and holds the potentials of bit lines, and either ones of even-bit lines or odd-bit lines are connected to the circuit. When the bit line potential holding circuit is connected to even-bit lines and a block copy is performed, data is first outputted to the even-bit lines, and after the potential of the even-bit line is determined, the bit line potential holding circuit operates. Then, biasing of the potential of the even-bit lines is carried out by the bit line potential holding circuit, the potentials of the bit lines are maintained and held. At the same time, data is outputted to the odd-bit lines and the potentials of the odd-bit lines are determined. Then, a program voltage is supplied to a selected word line, and data is simultaneously written (programmed) in the memory cells connected to the even-bit lines, and the memory cells connected to the odd-bit lines.
Abstract:
A semiconductor memory device includes: a memory cell array, in which electrically rewritable and non-volatile memory cells are arranged to store multi-value data; a sense amplifier circuit configured to read data of and write data in the memory cell array; and a controller configured to control data read and write of the memory cell array, wherein the controller has such a function as, when an upper page data write sequence ends in failure, the upper page data being one to be written into an area of the memory cell array where lower page data has already been written, to cache the lower page data read out of the memory cell array and held in the sense amplifier circuit.