Abstract:
A system for controlling a power output is disclosed. The system includes a hydraulic actuator configured to output a first torque and a source of pressurized fluid configured to supply a flow of pressurized fluid to the hydraulic actuator. The system further includes a controller configured to control the flow of pressurized fluid as a function of the first torque, a predetermined torque, and changes to the first torque caused by a load operatively connected to the hydraulic actuator.
Abstract:
A method is provided for controlling braking in a vehicle having a motor and a brake. The method includes sensing an actual operating parameter of the motor and receiving a desired operating parameter of the motor. The motor is controlled based on the actual operating parameter and the desired operating parameter of the motor. The brake is controlled based on the actual operating parameter and the desired operating parameter of the motor and an output from the motor control.
Abstract:
A sensor for a variable displacement pump is provided. The pump has a housing containing a swashplate that is adapted to rotate about an axis. The sensor includes a magnet connected to the swashplate to rotate with the swashplate. A semiconductor chip is disposed proximate the magnet and within the housing. A control is adapted to direct a current through the semiconductor chip and to determine the voltage across the semiconductor chip. The control is further adapted to determine the angle of the swashplate relative to the housing based on the determined voltage.
Abstract:
A method and apparatus for controlling a variable displacement hydraulic pump having a swashplate pivotally attached to the pump. The method and apparatus includes determining a desired swashplate angle as a function of a power limit of the pump, determining an actual swashplate angle, determining a value of discharge pressure of the pump, moving a servo valve spool to a desired position as a function of the desired swashplate angle, the actual swashplate angle and the discharge pressure, and responsively moving the swashplate to the desired swashplate angle position.
Abstract:
An apparatus and method for controlling a discharge pressure of a variable displacement hydraulic pump. The apparatus and method includes a swashplate pivotally attached to the pump, a valve plate located on the pump to allow hydraulic fluid to enter the pump through an intake port on the valve plate, and to exit the pump through a discharge port on the valve plate, the hydraulic fluid entering and exiting the pump responsively creating a pressure carry over angle &ggr;, a control servo operable to control an angle of the swashplate relative to the pump, a servo valve having an output port hydraulically connected to the control servo and an input port hydraulically connected to the pump output port, and means for controlling the servo valve as a function of the discharge pressure of the pump and responsively balancing a torque induced by the pressure carry over angle &ggr; with a torque generated by a control pressure Pc at the control servo.
Abstract:
Methods, apparatuses, and computer program products for controlling the torque load of multiple variable displacement hydraulic pumps are described herein. A pump displacement limit for each variable displacement hydraulic pump is determined using a nonlinear control law to limit the total pump torque load of the variable displacement hydraulic pumps on the engine. The value of the actual pump displacement of each variable displacement hydraulic pump is controlled based upon the respective determined pump displacement limit.
Abstract:
An electro-hydraulic control system manages speed of a hydraulic fan by using a solenoid to bias a three position pool of a control valve coupled to a hydraulic pump driving the fan. In a first position, the spool releases pressure on a de-stroke actuator of the pump and allows an on-stroke actuator to increase output pressure corresponding to a speed of an engine driving the pump. In a second position, the spool isolates the de-stroke actuator and fixes the pressure output of the pump. In a third position, the spool couples the de-stroke actuator to the pump output and causes a reduction in the pressure output of the pump. The solenoid coupled to the spool sets the output pressure at which the spool is in the second position.
Abstract:
A system and method for controlling a variator operate to detect variator torques and/or internal pressures and generates a preliminary corrective command. The preliminary corrective command is transformed via a dynamic transform to account for system characteristics during transient operating conditions such as machine acceleration, such that the acceleration of the system during transient periods is not torque-limited by static torque-control map values. In an embodiment, the acceleration may be positive or negative, and in a further embodiment, braking is automatically applied in the case of negative requested power or desired machine retarding.
Abstract:
A system for controlling a power output is disclosed. The system includes a hydraulic actuator configured to output a first torque and a source of pressurized fluid configured to supply a flow of pressurized fluid to the hydraulic actuator. The system further includes a controller configured to control the flow of pressurized fluid as a function of the first torque, a predetermined torque, and changes to the first torque caused by a load operatively connected to the hydraulic actuator.
Abstract:
A system and method for controlling a variator operate to detect variator torques and/or internal pressures and generates a preliminary corrective command. The preliminary corrective command is transformed via a dynamic transform to account for system characteristics during transient operating conditions such as machine acceleration, such that the acceleration of the system during transient periods is not torque-limited by static torque-control map values. In an embodiment, the acceleration may be positive or negative, and in a further embodiment, braking is automatically applied in the case of negative requested power or desired machine retarding.