Abstract:
Embodiments of a system, controller, and method for operating a plurality of pumps for a turbine driven fracturing pump system used in hydraulic fracturing are disclosed. In an embodiment, a method of operating a plurality of pumps associated with a hydraulic fracturing system includes receiving a demand Hydraulic Horse Power (HHP) signal. The demand HHP signal may include the Horse Power (HP) required for the hydraulic fracturing system to operate and may include consideration for frictional and other losses. The method further includes operating available pump units at a percentage of rating below Maximum Continuous Power (MCP) level, based at least in part on the demand HHP signal. Furthermore, the method may include receiving a signal for loss of power from one or more pump units. The method further includes operating one or more units at MCP level and operating one or more pump units at Maximum Intermittent Power (MIP) level to meet the demand HHP signal.
Abstract:
A method of controlling a hydraulic system having a variable displacement pump operatively coupled to an engine. The method includes detecting a speed of the engine, and determining a desired power value of the pump. The method also includes identifying an allowable power value that may be expended by the pump at the detected speed. The method also includes selecting a pump power value. The selected pump power value is the lower of the allowable power value and the desired power value. The method further includes adjusting the pump to deliver the selected pump power value.
Abstract:
The invention further relates to an apparatus and method for monitoring a peristaltic hose pump, in particular a peristaltic hose pump of an extracorporeal blood treatment device. The power consumed by the pump and/or the pressure in the tubing segment upstream or downstream of the pump is/are measured during operation of the pump and test signals I1(t), I2(t) which are associated with the individual displacement members are determined. The power or pressure signals associated with the individual displacement members significantly differ from each other during abnormal operation of the hose pump, but no significant differences can be recognized during normal operation of the pump.
Abstract:
The invention further relates to an apparatus and method for monitoring a peristaltic hose pump, in particular a peristaltic hose pump of an extracorporeal blood treatment device. The power consumed by the pump and/or the pressure in the tubing segment upstream or downstream of the pump is/are measured during operation of the pump and test signals I1(t), I2(t) which are associated with the individual displacement members are determined. The power or pressure signals associated with the individual displacement members significantly differ from each other during abnormal operation of the hose pump, but no significant differences can be recognized during normal operation of the pump.
Abstract:
A method of monitoring the operation of a compressor includes sensing a parameter on a housing of the compressor from a device placed on the housing, generating a representative sensor signal in response to the sensed parameter, transmitting from the device a data signal related to the representative sensor signal, and receiving the data signal at a location remote from the housing. Other methods and an apparatus for monitoring the compressor are further disclosed.
Abstract:
The invention provides a variable speed hydraulic pump designed to operate at a maximum horsepower throughout its pressure range by adjusting motor speed according to motor load parameters. In particular, the variable speed hydraulic pump includes a hydraulic pump unit coupled to a variable speed electric motor by a drive unit and to a hydraulic fluid tank for pressurizing and pumping hydraulic fluid when operated by the motor. A motor controller is electrically connected to the motor to supply drive signals to the motor based on electrical characteristics of the drive signals which are dependent on the load exerted on the motor. Suction from the load is provided by both the main pump and a bidirectional supercharging pump by reversing the direction of the motor and shifting a 4/3 valve to connect the main pump inlet to the load and its outlet to tank. In addition, the controller reduces the motor speed at the maximum rated pressure to just maintain the pressure, to reduce the amount of fluid pumped through the maximum pressure relief valve.
Abstract:
A control system for a hydraulic pump of the variable displacement type using a pair of coaxially arranged pressure responding pistons. The control system comprises a servo valve for controlling a conduit of pump delivery pressure which is to be applied to a larger chamber of a servo cylinder in response to the pump delivery pressure and external pilot pressure. The servo valve includes a servo spool for controlling the conduit in order to control the pump delivery pressure, a servo sleeve for movably receiving the servo spool, a pump delivery pressure responding piston for biasing the servo spool in response to the pump delivery pressure, an external pilot pressure responding piston adapted for biasing the servo spool in response to the external pilot pressure and being coaxially arranged with the pump delivery pressure responding piston. The lever assembly causes the servo sleeve to move in accordance with the movement of the servo piston. The lever assembly has an inclined surface part for causing displacement of the servo piston as a function of displacement of the pressure responding pistons to show a characteristic hyperbola.
Abstract:
A servomechanism for pump capacity control includes an adjustable throttle of the "nozzle-gate" type formed with two operating slots communicating through two fixed throttles with duct, a source of supply feeding the duct, an input signal converter whose movable element is connected to the gate of the nozzle-gate throttle and a four-slot, five-line distributor whose control spaces are in communication through two fixed throttles with the duct of the source of supply, two operating slots being formed in the adjustable throttle, whereas its operating spaces communicate with the corresponding spaces of an actuating hydraulic cylinder. The latter is connected to the control element and, by a mechanical position feedback, to the gate. The mechanical position feedback is constituted by a bar which is linked to the movable element of the hydraulic cylinder and has a slanted surface. The slanted surface interacts with a spring-loaded pusher, whose springs act on the gate. The servomechanism incorporates a device which ensures linear dependence of the speed of hydraulic cylinder movement on the displacement of the gate away from the neutral position, and acts on the slide valve of the four-slot five-line distributor. The servomechanism additionally includes a mechanism for limiting the power of the controlled pump, the mechanism being linked mechanically with the hydraulic cylinder and the gate of the nozzle-gate throttle, and hydraulically with the discharge line of the controlled pump.
Abstract:
A method and controller for creating a digital twin of a pump. The method includes receiving, by a controller, a specification curve corresponding to a centrifugal pump. The method includes building and executing, by the controller, a first model of the centrifugal pump, based on the specification curve. The method includes receiving sensor data corresponding to and during the operation of the pump. The method includes updating the first model according to the sensor data to produce an updated model, and storing the updated model as a digital twin of the centrifugal pump.
Abstract:
A compressor provided with a compressor element, a motor configured to drive said compressor element and an electronic pressure switch. The electronic pressure switch includes a pressure sensor; a current sensor; a microprocessor unit including a first input port and a second input port; a first communication unit; and a second communication unit. The electronic pressure switch includes a housing. The microprocessor unit, the pressure sensor, the current sensor, the first communication unit and the second communication unit are integrated in said housing.