Abstract:
A method embodiment includes implementing, by a base station (BS), a grant-free uplink transmission scheme. The grant-free uplink transmission scheme defines a first contention transmission unit (CTU) access region in a time-frequency domain, defines a plurality of CTUs, defines a default CTU mapping scheme by mapping at least some of the plurality of CTUs to the first CTU access region, and defines a default user equipment (UE) mapping scheme by defining rules for mapping a plurality of UEs to the plurality of CTUs.
Abstract:
A method embodiment includes implementing, by a base station (BS), a grant-free uplink transmission scheme. The grant-free uplink transmission scheme defines a first contention transmission unit (CTU) access region in a time-frequency domain, defines a plurality of CTUs, defines a default CTU mapping scheme by mapping at least some of the plurality of CTUs to the first CTU access region, and defines a default user equipment (UE) mapping scheme by defining rules for mapping a plurality of UEs to the plurality of CTUs.
Abstract:
System and method embodiments are provided for interference mitigation and signal enhancement in downlink wireless communications for MIMO systems with device-to-device communications across cooperating user terminals. In an embodiment, a network controller initializes a transmit covariance for beam-forming a transmit signal of the MIMO transmission from a base-station to a destination terminal and a relay terminal, and initializes a quantization noise covariance used for compressing a relay signal from the relay terminal to the destination. The transmit covariance and the quantization noise covariance are initialized in accordance with known channel state information and with statistics of noise and interference for transmit and relay channels. The transmit covariance and the quantization noise covariance are then jointly optimized using an iterative algorithm in accordance with a capacity constraint on a relay link between the relay terminal and the destination terminal and a transmit signal power constraint of the base-station.
Abstract:
System and method embodiments are provided herein for achieving low peak-to-average power ratio (PAPR) signals in multiple-input and multiple-output (MIMO) systems, including Massive MIMO (M-MIMO) systems. The embodiments include two schemes to reduce the PAPR in the transmitted signals. In a first scheme, the signals are precoded, at a BS or UE, to offload a signal from one antenna to another antenna to achieve PAPR reduction. The precoding is done with some penalty in terms of signal gain. In a second scheme, the signal is clipped and the clipped portion is further projected on the MIMO antennas to compensate for the error caused by clipping. Out-of-band radiation is also removed in this scheme.
Abstract:
A method includes receiving, by a user equipment (UE) from a network node, a UE specific tracking sequence and assigned transmission opportunities and transmitting, by the UE to the network node, the UE specific tracking sequence in accordance with the assigned transmission opportunities.
Abstract:
A method for operating a first device includes determining a spreading pattern associated with the first device, placing a pilot signal associated with the first device into resources of a first transmission symbol in accordance with the spreading pattern, and transmitting the first transmission symbol to a second device.
Abstract:
Coding gains can be achieved by encoding binary data directly to multi-dimensional codewords, which circumvents QAM symbol mapping employed by conventional CDMA encoding techniques. Further, multiple access can be achieved by assigning different codebooks to different multiplexed layers. Moreover, sparse codewords can be used to reduce baseband processing complexity on the receiver-side of the network, as sparse codewords can be detected within multiplexed codewords in accordance with message passing algorithms (MPAs).
Abstract:
Methods and devices are provided that enable user equipment (UE) beam tracking. The method includes: transmitting user equipment (UE) beam tracking capability information, receiving beam tracking update configuration information, updating a UE beam based on the UE beam tracking capability information and the beam tracking update configuration information.
Abstract:
Aspects of the present disclosure are directed to channel state information (CSI) acquisition and feedback where the UE estimates the channel based on a received reference signal (such as a channel state information reference signal (CSI-RS)) and calculates an appropriate precoder matrix according to the measured channel. The UE can then send a compressed version of the precoder matrix based on a set of joint space-frequency subspace vectors to the base station that can be used by the base station in order to recover the precoder matrix from the compressed version of the precoder matrix.
Abstract:
Embodiments of the present application pertain to control information for scheduling a transmission resource for downlink and uplink communications between one or more TRP and one or more UE. One Physical Downlink Control Channel (PDCCH) for DL control information transmission is assumed to carry at least one assignment or scheduling information block for at least one Physical Downlink Shared Channel (PDSCH) for DL data transmission or for at least one Physical Uplink Shared Channel (PUSCH) for UL data transmission. Embodiments of the present application provide methods of providing configuration information that can be used by a user equipment (UE) to determine transmission mode for the PDSCH and PUSCH as well as information to determine where to monitor for the PDSCH, PUSCH and PUCCH information.