Abstract:
A software-defined radio system for detecting packets is disclosed, including: a transmitting end configured for assigning a preamble and a postamble to a start position and an end position of a packet of a signal, respectively, before transmitting the signal; and a receiving end configured for detecting if a packet exists in the air or in a channel based on the preamble and the postamble, wherein the receiving end stores the signal in memory when detecting the preamble, and stops storing the signal in the memory and transmits the signal to a computing device when detecting the postamble. A packet detection method for a software-defined radio system is also provided.
Abstract:
A method of ultrasound imaging and a corresponding ultrasound scanner are provided. The method includes the steps of receiving an echo signal induced by an ultrasonic plane wave transmission from a transducer of an ultrasound scanner, resampling the echo signal in time domain and/or space domain, performing a spectrum zooming on a band of interest (BOI) of an input signal, performing a Fourier transform on a result of the spectrum zooming, and generating an ultrasound image based on a result of the Fourier transform. The input signal is generated based on the resampling of the echo signal.
Abstract:
A visible light communication method performs visible light communication by using a visible light source. In searching a central frequency of the visible light source, a plurality of central-frequency training packets are sent, the central-frequency training packets including a plurality of central-frequency candidates, and one among the plurality of central-frequency candidates is selected as the central frequency of the visible light source based on a first decoding result on the plurality of central-frequency training packets. In searching a bandwidth of the visible light source, a plurality of bandwidth training packets are sent, the bandwidth training packets including a plurality of bandwidth candidates and the central frequency of the visible light source, and one among the plurality of bandwidth candidates is selected as the bandwidth of the visible light source based on a second decoding result on the plurality of bandwidth training packets.
Abstract:
A beamforming method of millimeter wave communication is introduced herein. the beamforming method is adapted to a base station and includes following steps. A plurality of periodic signals are transmitted by using a frame header of M radio frames via Q base station beams designated as Q scan beams while performing a network entry, wherein M≧1 and Q≧1. Data packets are transceived by using a payload region of the M radio frames via at least one scheduled beam while a user equipment connection is performed via the scheduled beam selected from the Q base station beams.
Abstract:
According to an exemplary embodiment, an ultrasound apparatus for beamforming with a plane wave transmission may comprise a transceiver connected to a transducer array having at least one transducer element, and at least one processor. The transceiver transmits at least one substantially planar ultrasonic wave into a target region at one or more angles relative to the transducer array, and receives one or more signals responsive from the transducer array. The at least one processor applies a fast Fourier transform (FFT) to the one or more signals from each of the at least one transducer element and calculates at least one frequency within a frequency region, and applies an inverse FFT to at least one produced frequency data.
Abstract:
A method of handling a plurality of time offsets between a communication device of a wireless communication system and a plurality of transmission points of the wireless communication system is disclosed. The method is utilized in the communication device, and comprises obtaining the plurality of time offsets by using a first reference signal; and transmitting the plurality of time offsets to the plurality of transmission points, respectively; wherein the plurality of transmission points compensate the plurality of time offsets, respectively, when communicating with the communication device.
Abstract:
A method and an apparatus are provided for scrambling sequence initialization for downlink demodulation reference signal (DL DMRS) applied to the multi-user (MU) multi-input multi-output (MU-MIMO) in a coordinated multiple point (CoMP) scenario. The value of virtual slot index in the sequence initialization of the DL DMRS can be dynamically selected from two candidates and tied to the virtual cell ID and/or the physical downlink shared channel (PDSCH) scrambling ID. The two candidate values can be configured by a user equipment (UE) specific semi-statistical higher layer signaling if a subframe shifting is considered for enhanced inter-cell interference cancellation (eICIC) in HeNets. Possible values of virtual slot index used for generating the DL DMRS sequence initialization of the cell can then be derived so that access procedure information, which may include synchronization signal, physical broadcast channel, paging message, can be reliably received at the remote radio header (RRH) or pico cell.
Abstract:
A method and an apparatus are provided for scrambling sequence initialization for downlink demodulation reference signal (DL DMRS) applied to the multi-user (MU) multi-input multi-output (MU-MIMO) in a coordinated multiple point (CoMP) scenario. The value of virtual slot index in the sequence initialization of the DL DMRS can be dynamically selected from two candidates and tied to the virtual cell ID and/or the physical downlink shared channel (PDSCH) scrambling ID. The two candidate values can be configured by a user equipment (UE) specific semi-statistical higher layer signaling if a subframe shifting is considered for enhanced inter-cell interference cancellation (eICIC) in HeNets. Possible values of virtual slot index used for generating the DL DMRS sequence initialization of the cell can then be derived so that access procedure information, which may include synchronization signal, physical broadcast channel, paging message, can be reliably received at the remote radio header (RRH) or pico cell.
Abstract:
A method of handling a plurality of time offsets between a communication device of a wireless communication system and a plurality of transmission points of the wireless communication system is disclosed. The method is utilized in the communication device, and comprises obtaining the plurality of time offsets by using a first reference signal; and transmitting the plurality of time offsets to the plurality of transmission points, respectively; wherein the plurality of transmission points compensate the plurality of time offsets, respectively, when communicating with the communication device.