Abstract:
A method for forming a semiconductor device comprises forming an insulation trench structure comprising insulation material extending into the semiconductor substrate from a surface of the semiconductor substrate. The insulation trench structure laterally surrounds a portion of the semiconductor substrate. The method further comprises modifying the laterally surrounded portion of the semiconductor substrate to form a vertical electrically conductive structure comprising an alloy material. The alloy material is an alloy of the semiconductor substrate material and at least one metal.
Abstract:
A sound transducer structure includes a membrane, a counter electrode, and a plurality of elevations. The membrane includes a first main surface, made of a membrane material, in a sound transducing region and an edge region of the membrane. The counter electrode is made of counter electrode material, and includes a second main surface arranged in parallel to the first main surface of the membrane on a side of a free volume opposite the first main surface of the membrane. The plurality of elevations extend in the sound transducing region from the second main surface of the counter electrode into the free volume.
Abstract:
A MEMS device includes a backplate electrode and a membrane disposed spaced apart from the backplate electrode. The membrane includes a displaceable portion and a fixed portion. The backplate electrode and the membrane are arranged such that an overlapping area of the fixed portion of the membrane with the backplate electrode is less than maximum overlapping.
Abstract:
According to an embodiment, a MEMS transducer includes a stator, a rotor spaced apart from the stator, and a multi-electrode structure including electrodes with different polarities. The multi-electrode structure is formed on one of the rotor and the stator and is configured to generate a repulsive electrostatic force between the stator and the rotor. Other embodiments include corresponding systems and apparatus, each configured to perform corresponding embodiment methods.
Abstract:
According to an embodiment, a method of operating a speaker with an acoustic pump includes generating a carrier signal having a first frequency by exciting the acoustic pump at the first frequency and generating an acoustic signal having a second frequency by adjusting the carrier signal. In such embodiments, the first frequency is outside an audible frequency range and the second frequency is inside the audible frequency range. Adjusting the carrier signal includes performing adjustments to the carrier signal at the second frequency. Other embodiments include corresponding systems and apparatus, each configured to perform corresponding embodiment methods.
Abstract:
A sound transducer structure includes a membrane and a counter electrode. The membrane includes a first main surface in a sound transducing region made of a membrane material, and an edge region. The counter electrode includes a second main surface arranged in parallel to the first main surface of the membrane on a side of a free volume opposite the first main surface of the membrane. A plurality of elevations extend in the sound transducing region from the second main surface of the counter electrode into the free volume. The membrane and the counter electrode are arranged to provide a capacity therebetween. The membrane comprises a corrugation groove extending in the sound transducing region from the first main surface of the membrane into the free volume.
Abstract:
A sound transducer structure includes a membrane, a counter electrode, and a plurality of elevations. The membrane includes a first main surface, made of a membrane material, in a sound transducing region and an edge region of the membrane. The counter electrode is made of counter electrode material, and includes a second main surface arranged in parallel to the first main surface of the membrane on a side of a free volume opposite the first main surface of the membrane. The plurality of elevations extend in the sound transducing region from the second main surface of the counter electrode into the free volume.
Abstract:
A thermal emitter includes a freestanding membrane supported by a substrate, wherein the freestanding membrane includes in a lateral extension a center section, a conductive intermediate section and a border section, wherein the conductive intermediate section laterally surrounds the center section and is electrically isolated from the center section, the conductive intermediate section including a conductive semiconductor material that is encapsulated in an insulating material, wherein the border section at least partially surrounds the intermediate section and is electrically isolated from the conductive intermediate section, and wherein a perforation is formed through the border section.
Abstract:
In accordance with one exemplary embodiment, a production method for a double-membrane MEMS component comprises the following steps: providing a layer arrangement on a carrier substrate, wherein the layer arrangement has a first and second membrane structure spaced apart from one another and a counterelectrode structure arranged therebetween, wherein a sacrificial material is arranged in an intermediate region between the counterelectrode structure and the first and second membrane structures respectively spaced apart therefrom, and wherein the first membrane structure has an opening structure to the intermediate region with the sacrificial material and partly removing the sacrificial material from the intermediate region in order to obtain a mechanical connection structure comprising the sacrificial material between the first and second membrane structures, which mechanical connection structure is mechanically coupled between the first and second membrane structures and is mechanically decoupled from the counterelectrode structure.
Abstract:
According to an embodiment, a microspeaker includes an acoustic micropump structure configured to pump at a first frequency above an upper audible frequency limit. The acoustic micropump structure is further configured to generate an acoustic signal having a second frequency by adjusting the pumping. Adjusting the pumping includes adjusting a direction of pumping for the acoustic micropump structure according to the second frequency. Adjusting the direction of pumping includes changing a direction of flow of an elastic medium through the acoustic micropump structure from a first direction to a second direction. The second frequency is below the upper audible frequency limit.