Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of tearing down a Protocol Adaptation Layer (PAL) session. For example, an apparatus may include a first PAL communication unit to control a PAL connection, over a PAL, between a first device and a second device, the first PAL communication unit is to control the PAL connection during a session with a second PAL communication unit over a communication link, wherein the first PAL communication unit is to tear down the session according to a tear down procedure.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of supporting streaming over a Protocol Adaptation Layer (PAL). For example, an apparatus may include a first PAL communication unit to communicate PAL traffic with a second PAL communication unit over a communication link, the PAL traffic comprising traffic of a PAL connection, over a PAL, between a first device and a second device, the PAL is above a layer of the communication link, the PAL traffic comprising data to be communicated between the first device and one or more endpoints via the second device, wherein the first PAL communication unit is to communicate an endpoint open stream request and an endpoint open stream response with the second PAL communication unit over the communication link.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of supporting streaming over a Protocol Adaptation Layer (PAL). For example, an apparatus may include a first PAL communication unit to communicate PAL traffic with a second PAL communication unit over a communication link, the PAL traffic comprising traffic of a PAL connection, over a PAL, between a first device and a second device, the PAL is above a layer of the communication link, the PAL traffic comprising data to be communicated between the first device and one or more endpoints via the second device, wherein the first PAL communication unit is to communicate an endpoint open stream request and an endpoint open stream response with the second PAL communication unit over the communication link.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of transitioning a device to a default state. For example, an apparatus may include a first Protocol Adaptation Layer (PAL) communication unit to communicate PAL traffic with a second PAL communication unit over a communication link, the PAL traffic comprising traffic of a PAL connection over a PAL, the PAL is above a layer of the communication link, wherein the first PAL communication unit is to communicate a device reset request and a device reset response with the second PAL communication unit over the communication link, the device reset request indicating transitioning of a peripheral device to a default state, the device reset response in response to the device reset request, the device reset response indicating whether the device reset request is successfully handled.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of controlling data flow over a communication network. For example, an apparatus may include a communication unit to control the transfer of a stream of data from a first device to a second device over a communication link, the stream of data including data to be delivered to a plurality of endpoints. For example, the controlling may include communicating between the first and second devices at least one message including at least one endpoint-specific credit consumption unit (CCU) defined with respect to at least one endpoint of the plurality of endpoints.
Abstract:
Examples are disclosed for a first device to wirelessly dock to a second device. In some examples, a first device may receive identification from the second device for wirelessly docking. The first device may determine whether the second device is allowed to wirelessly dock and if allowed an authentication process may be implemented. The first device may then wirelessly dock to the second device based on a successful authentication. Other examples are described and claimed.
Abstract:
Some demonstrative embodiments include devices, systems and/or methods of communicating during an Association-Beamforming-Training (A-BFT). For example, a device may include a wireless communication unit to communicate a beacon frame during a beacon transmission interval (BTI), the beacon frame including a responder address field including a responder address representing one or more client devices, which are allowed to transmit during an A-BFT period following the BTI.
Abstract:
Technologies for improving enumeration of universal serial bus (USB) devices over a media agnostic USB (MAUSB) connection are disclosed. In the illustrative embodiment, an MAUSB device may send USB configuration data to a host compute device. The host compute device may then perform a virtual enumeration of the USB devices based on the USB configuration data without necessarily communicating with the USB devices. The MAUSB device may perform an enumeration of the USB devices on behalf of the host compute devices without necessarily communicating with the host compute device. The USB devices may not be aware or have any indication that the USB device is not communicating with the host compute device during the enumeration process. Such an approach may improve the latency of USB enumeration over an MAUSB connection.
Abstract:
Apparatus, systems, articles of manufacture, and methods for processing video in virtual reality environments are disclosed. An example virtual reality display device to process video in a virtual reality environment includes a video analyzer to detect unsmooth video data in the stream of video data and a video library to provide alternative video data. The example device also includes a selector to receive the stream of video data, an indication of the unsmooth video data, and the alternative video data. The selector is to select the alternative video data to replace the unsmooth video data based on the indication of the unsmooth video data and output a modified stream of video data including the stream of video data with the alternative video data in place of the unsmooth video data. The example device also includes an output display to display the modified stream of video data.
Abstract:
A method for operating a media agnostic universal serial bus (MAUSB) device includes a compute device having a link connection manager, a USB manager, and a state manager. The compute device establishes a link with a MAUSB device and a session with the MAUSB device. Subsequently to receipt of a sleep command for the compute device, the compute device transitions to a sleep state and terminates the link with the MAUSB device while keeping intact the session with the MAUSB device. The compute device transitions back to an active state in response to receipt of a wake command for the compute device. The compute device sends a wake request to the MAUSB device. If the MAUSB device responds to the wake request with an acceptance, then the compute device reestablishes the previous session with the MAUSB device. If instead an error is received, the compute device terminates the session.