Abstract:
An apparatus providing a direct chip to waveguide transition, comprising: one or more waveguides, a chip partially embedding each of the waveguides at a transition area positioned at a narrow side of each waveguide, and a transmitting element disposed at each of the transition areas, thereby providing one or more simultaneous, direct transitions between the chip and the waveguides.
Abstract:
A novel and useful THz radiation detector comprising a suspended wideband planar skirt antenna for achieving low thermal mass and high electrical performance. The antenna comprises only the perimeter or “skirt” of the antenna. The antenna has multiple loops where each loop comprises a conductor that covers the perimeter or skirt and includes multiple inner and outer arms. The total length of each loop has a length substantially one wavelength. One or more ports or load impedances are connected at the center of the antenna and shared by one or more loops. A thermal sensor detects the heat generated in the load resister and converts the heat energy to an electrical signal which is transmitted to read out circuitry via signal lines that run together with a holding arm. The holding arm functions as both a path for the read out signals as well as providing mechanical support for and effectively suspending the antenna.
Abstract:
A novel and useful method of visualization by detection of EM radiation being irradiated or reflected from objects in the imager's field of view using Finite Element Method (FEM) simulation software tools. The methodology provides a verification method of antenna operation from an electrical point of view since bolometer performance cannot be estimated using regular antenna parameters such as directivity, gain, impedance matching, etc. as the bolometer does not behave as an antenna but rather behaves as an absorber. An incident wave is triggered on the absorber and the absorption of the bolometer structure is estimated using commercially available Finite Element Method (FEM) software (e.g., ANSYS HFSS, CST Microwave Studio, etc.). How much of the energy is reflected is subsequently measured. The energy which is not reflected is considered to be absorbed by the absorber.
Abstract:
There is provided a novel and useful a high responsivity device for thermal sensing in a Terahertz (THz) radiation detector. A load impedance connected to an antenna heats up due to the incident THz radiation received by the antenna. The heat generated by the load impedance is sensed by a thermal sensor such as a transistor. To increase the responsivity of the sense device without increasing the thermal mass, the device is located underneath a straight portion of an antenna arm. The transistor runs substantially the entire length of the antenna arm alleviating the problem caused by placing large devices on the side of the antenna and the resulting large additional thermal mass that must be heated. This boosts the responsivity of the pixel while retaining an acceptable level of noise and demanding a dramatically smaller increase in the thermal time constant.
Abstract:
A computer-implemented method of reducing an impact of stray magnetic fields on components of a quantum computing chip is disclosed. The computer implemented method includes applying a first current signal to a first component of a quantum computing chip, whereby the first component generates a stray magnetic field impacting an operation of a second component of the quantum computing chip. The computer implemented method further includes applying a compensation current signal to a shielding circuit of the quantum computing chip, the compensation current signal generated according to a predetermined function of the first signal, to magnetically shield the second component from the stray magnetic field generated by the first component.
Abstract:
The invention relates to a control unit for controlling a data transfer between a classical processor and a quantum processor with a plurality of qubits. The control unit comprises a plurality of control and read-out circuits configured for controlling and reading out the plurality of qubits. Each of the control and read-out circuits is assigned to one or more of the qubits. A controlling of the quantum processor by the control unit comprises selectively powering on a subset of the control and read-out circuits during an instruction cycle, while ensuring that the remaining control and read-out circuits are powered off during the instruction cycle. The powered-on subset of control and read-out circuits is used to control a subset of the qubits and to read out data from the subset of qubits.
Abstract:
Disclosed herein is an analog-to-digital converter circuit configured for digitizing an analog input signal. The analog-to-digital converter comprises an analog input configured for receiving the analog input signal. The analog-to-digital converter circuit further comprises at least one sub-ADC connected to the analog input signal, wherein the at least one sub-ADC is configured to output at least one encoded output vector in response to receiving the analog input signal. The analog-to-digital converter circuit further comprises a lookup circuit comprising a nested lookup table. The lookup circuit is configured to select an output value from the nested lookup table using the at least one encoded output vector, wherein the lookup circuit is configured to provide the output value as the digitization of the analog input signal.
Abstract:
Provided is a low noise amplifier circuit for a quantum computer. The low noise amplifier circuit comprises a plurality of input stages, a shared output stage, and a voltage controller. Each input stage is coupled to one or more qubits. The shared output stage is coupled to the plurality of input stages. The voltage controller is coupled to the plurality of input stages and the shared output stage. The voltage controller is configured to selectively activate an input stage of the plurality of input stages in order to read a qubit coupled to the input stage.
Abstract:
An electrostatic discharge (ESD) protection circuit is configured to protect a target circuit that operates in a cryogenic temperature is provided. The ESD protection circuit connects a terminal of the target circuit and a ground potential with no connection to a bias potential. When the ESD protection circuit receives a voltage potential at the terminal of the target circuit, the ESD protection circuit (i) disallows electrical current to flow through from the received voltage potential when the device is at a cryogenic temperature and (ii) allows electrical current to flow through from the received voltage potential when the device is at a room temperature.
Abstract:
An electrostatic protection device for protecting an input port of an electronic circuit. The electrostatic protection device includes a first stacked coil, a second stacked coil, and an input terminal, wherein the second stacked coil is inductively coupled to the first stacked coil. The first stacked coil comprises a first coil input connected to the input terminal, and a first coil output port connected to a lower frequency ESD protection circuit, and wherein the lower frequency ESD protection circuit comprises a lower frequency output. The second stacked coil comprises an output port connected to a higher frequency ESD protection circuit, and wherein the higher frequency ESD protection circuit comprises a higher frequency output.