Abstract:
A watermarking procedure that is applicable to images, audio, video and multimedia data to be watermarked divides the data to be watermarked into a set of n×n blocks, such as the 8×8 blocks of MPEG. The same watermark signal can be distributed throughout the set of blocks in a large variety of ways. This allows the insertion algorithm to be changed without affecting the decoders. The decoding procedure first sums together the DCT coefficients of N sets of 8×8 blocks to form a set of N summed 8×8 blocks and then extracts the watermark from the summed block. Since the sum of the DCT blocks is equal to the DCT of the sum of the intensity blocks, efficient decoding can occur in both the spatial and frequency domains. The symmetric nature of the decoding process allows geometric distortions to be handled in the spatial domain and other signal distortions to be handled in the frequency domain. Moreover, insertion of a watermark signal into image data and the subsequent extraction of the watermark from watermarked image data which has been subject to distortion between the times of insertion and extraction involves the insertion of multiple watermarks designed to survive predefined distortions of the image data, such as panscan or letterbox mode transformations. Alternatively, a registration pattern in the image data, after the image data containing the registration pattern is subject to an unknown distortion, is used to compensate for distortion of the watermarked image data.
Abstract:
A method for data preparation and watermark insertion. The method includes the step of preparing the data at a first time by manipulating at least one set of the data characteristics for subsequent insertion of a first watermark. In a preferred embodiment of the method of the present invention the method further includes the step of inserting the first watermark by manipulating the set of data characteristics at a second time subsequent to the first time. In still yet another preferred embodiment of the method of the present invention, the method further includes the step of inserting a second watermark at a third time, before, during, or after the first time, by manipulating at least one set of the data characteristics. In a variation of the present invention a method for inserting a watermark into compressed data is provided. The compressed data has sets of data characteristics. The method includes the steps of inserting a watermark by manipulating the set of data characteristics; and optimizing the manipulated data by modifying the compressed data characteristics subject to a set of constraints.
Abstract:
Digital watermarking of audio, image, video or multimedia data is achieved by inserting the watermark into the perceptually significant components of a decomposition of the data in a manner so as to be visually imperceptible. In a preferred method, a frequency spectral image of the data, preferably a Fourier transform of the data, is obtained. A watermark is inserted into perceptually significant components of the frequency spectral image. The resultant watermarked spectral image is subjected to an inverse transform to produce watermarked data. The watermark is extracted from watermarked data by first comparing the watermarked data with the original data to obtain an extracted watermark. Then, the original watermark, original data and the extracted watermark are compared to generate a watermark which is analyzed for authenticity of the watermark.
Abstract:
A watermarking procedure that is applicable to images, audio, video and multimedia data to be watermarked divides the data to be watermarked into a set of n.times.n blocks, such as the 8.times.8 blocks of MPEG. The same watermark signal can be distributed throughout the set of blocks in a large variety of ways. This allows the insertion algorithm to be changed without affecting the decoders. The decoding procedure first sums together the DCT coefficients of N sets of 8.times.8 blocks to form a set of N summed 8.times.8 blocks and then extracts the watermark from the summed block. Since the sum of the DCT blocks is equal to the DCT of the sum of the intensity blocks, efficient decoding can occur in both the spatial and frequency domains. The symmetric nature of the decoding process allows geometric distortions to be handled in the spatial domain and other signal distortions to be handled in the frequency domain. Moreover, insertion of a watermark signal into image data and the subsequent extraction of the watermark from watermarked image data which has been subject to distortion between the times of insertion and extraction involves the insertion of multiple watermarks designed to survive predefined distortions of the image data, such as panscan or letterbox mode transformations. Alternatively, a registration pattern in the image data, after the image data containing the registration pattern is subject to an unknown distortion, is used to compensate for distortion of the watermarked image data.
Abstract:
A computer-implemented method including the steps of maintaining, by a computer system including at least one computer, a database in which is stored first data related to identification of one or more works and second data related to information corresponding to each of the one or more works as identified by the first data. Extracted features of a work to be identified are obtained. The work is identified by comparing the extracted features of the work with the first data in the database using a non-exhaustive neighbor search. The information corresponding to the identified work is determined based on the second data in the database. The determined information is associated with the identified work.
Abstract:
A cyclopean virtual imaging system provides a view from a virtual camera placed symmetrically or midway between the calibrated cameras of a physical stereo pair. Such a system may be used in video conferencing applications as well as other stereo image contexts. By combining the left and right stereo images captured by the stereo pair, a virtual image is produced such that the subject appears to be looking into a cyclopean virtual camera, rather than to the left or right of a single physical camera. The cyclopean virtual image is generated by a forward-backward algorithm using a probabilistic distribution of possible disparity families.
Abstract:
A method for inserting a digital signature into digital data is provided. The digital data has bits and the method includes the steps of: assigning predetermined bits of the digital data for receiving the digital signature; signing the digital data excluding the predetermined bits resulting in the digital signature; and inserting the digital signature into the predetermined bits of the digital data for subsequent authentication of the digital data. Also provided is a method for authenticating digital data having the embedded digital signature in the predetermined bits of the digital data including the steps of: extracting the digital signature from the predetermined bits; decrypting the digital signature from the digital data resulting in a first hash; applying a known one-way hashing function used by an encoder of the digital data to the digital data excluding the predetermined bits resulting in a second hash; and comparing the first hash to the second hash wherein if the first hash matches the second hash the digital data is authentic. In a preferred version of the methods of the present invention, the method further includes the step of inserting associated data into the digital data prior to the signing step such that the digital signature authenticates both the associated data as well as the digital data. Preferably, the associated data is inserted into the bits of the digital data excluding the predetermined bits.
Abstract:
Segmentation of an image into separate regions is useful in many computer vision problems. The separate regions may be represented by their enclosing contours. A planar graph is constructed for each image. The optimal contour is determined by the assignment of edge costs and face weights of the graph. An algorithm is provided such that given a planar graph G = (V,E) where V is a set of nodes, E is a set of edges and each edge e is provided with a non-negative cost c(e) and each face f of the planar graph is provided with a non-negative weight w(f), and given a single node v in G and single face F adjacent to v which is viewed as the exterior face, then find a directed path P in G that starts and finishes at v and minimizes ##EQU1## where cost(P) is defined as the length of the path under c, and weight (P) is the weight of the faces that are separated from F by P. The contour that minimizes .zeta. is the optimal contour.
Abstract:
Digital watermarking of data, including image, video and audio data, is performed by repeatedly inserting the watermark into subregions or subimages of the data. Similarly, the watermark is repeatedly extracted from the subregions of the data.
Abstract:
A watermark is embedded into audio/video/image/multimedia data using spread spectrum methodology. The watermark is extracted from watermarked data without the use of an original or unwatermarked version of the data by using spatial or temporal local averaging of the frequency coefficients of the watermarked data.