Abstract:
A method of manufacturing a coated low-friction medical device, such as low-friction medical tubing, including applying a coating to one or more selected portions of a surface of low-friction medical tubing to indicate at least one marking formed along the surface of the low-friction medical tubing, and simultaneously or substantially simultaneously: (a) curing the applied coating to a designated temperature (which is above the temperature at which the low-friction medical tubing begins to decompose and shrink) to adhere the applied coating to the surface of the low-friction medical tubing, (b) utilizing one or more anti-shrinking devices to counteract or otherwise inhibit the shrinking of the low-friction medical tubing, and (c) exhausting any harmful byproducts resulting from curing the low-friction medical tubing to a temperate above the temperature at which the low-friction medical tubing begins to decompose.
Abstract:
An electrosurgical device coated an epoxy modified rigid silicone powder coating which includes a solvent-free hydroxyl functional solid phenyl silicone resin in the range of about 40% to about 60% parts per weight of the coating; a calcium metasilicate in the range of about 20% to about 40% parts per weight of the coating; an epoxy cresol novalac resin in the range of about 5% to about 15% parts per weight of the coating; an ultra-fine air micronized muscovite mica in the range of about 0% to about 10% parts per weight of the coating; a 60% active powder version of a methyl alkyl polysilaxane in the range of about 3% to about 7% parts per weight of the coating; a high temperature calcination of coprecipitated compound with manganese-copper-iron in the range of about 0% to about 10% parts per weight of the coating; an o-cresol novolac resin in the range of about 0.5% to about 3% parts per weight of the coating; and an acrylate copolymer in the range of about 0.5% to about 3% parts per weight of the coating. This coating is applied to the surfaces of an electrosurgical device minimize the build-up of charred tissue (i.e., eschar) on the surfaces of the electrosurgical device.
Abstract:
Various embodiments provide an elongated part measuring apparatus including an elongated frame, an elongated transparent part supporter supported by the frame and configured to support an elongated part (such as a guide wire or mandrel), an elongated movable part straightener pivotally connected to and supported by the frame, and a movable optical measurer movably connected to and supported by the frame and configured to take multiple spaced apart outer dimensional measurements of the elongated part (whether uncoated or coated).
Abstract:
A coated string for a stringed device which includes a coating applied to the surface of the string. The coating includes a base layer bonded to the surface of the string and an at least partially transparent low-friction top coat applied to the base layer. The base layer includes heat activated pigments that change color when heated above a color shifting temperature. In one embodiment, the color of the pigment in one area contrasts with the color of the pigment in an adjacent area without otherwise affecting the low-friction surface of the coating. The areas of different color created in locations along the length of the low-friction coated string.
Abstract:
A vehicle braking system bias adjuster which includes a brake bias adjustment knob assembly which enables the driver of the vehicle to quickly and easily set, adjust, and visually and quickly determine the relative front to rear (or right front to left front) brake bias or brake bias setting of the vehicle before and while driving the vehicle. The brake bias adjustment knob assembly visually indicates the exact amount of brake bias, or if there is no bias at all. The ratio is expressed in numbers to enable the driver to reset the brake bias to a known value of ratio as needed for track conditions and vehicle weight changes. The value in numbers is reproducible. The present disclosure also provides a method and apparatus for retrofitting an existing vehicle with a brake bias adjustment knob assembly which enables the driver of the vehicle to quickly and easily set, adjust, and visually determine the relative brake bias or brake bias setting (i.e., the ratio of front to rear brake biasing or the ratio of side to side brake biasing) of the vehicle before and while driving the vehicle.
Abstract:
A method of manufacturing a coated low-friction medical device, such as low-friction medical tubing, including applying a coating to one or more selected portions of a surface of low-friction medical tubing to indicate at least one marking formed along the surface of the low-friction medical tubing, and simultaneously or substantially simultaneously: (a) curing the applied coating to a designated temperature (which is above the temperature at which the low-friction medical tubing begins to decompose and shrink) to adhere the applied coating to the surface of the low-friction medical tubing, (b) utilizing one or more anti-shrinking devices to counteract or otherwise inhibit the shrinking of the low-friction medical tubing, and (c) exhausting any harmful byproducts resulting from curing the low-friction medical tubing to a temperate above the temperature at which the low-friction medical tubing begins to decompose.
Abstract:
A method of manufacturing a coated low-friction medical device, such as low-friction medical tubing, including applying a coating to one or more selected portions of a surface of low-friction medical tubing to indicate at least one marking formed along the surface of the low-friction medical tubing, and simultaneously or substantially simultaneously: (a) curing the applied coating to a designated temperature (which is above the temperature at which the low-friction medical tubing begins to decompose and shrink) to adhere the applied coating to the surface of the low-friction medical tubing, (b) utilizing one or more anti-shrinking devices to counteract or otherwise inhibit the shrinking of the low-friction medical tubing, and (c) exhausting any harmful byproducts resulting from curing the low-friction medical tubing to a temperate above the temperature at which the low-friction medical tubing begins to decompose.
Abstract:
A vehicle braking system bias adjuster which includes a brake bias adjustment knob assembly which enables the driver of the vehicle to quickly and easily set, adjust, and visually and quickly determine the relative front to rear (or right front to left front) brake bias or brake bias setting of the vehicle before and while driving the vehicle. The brake bias adjustment knob assembly visually indicates the exact amount of brake bias, or if there is no bias at all. The ratio is expressed in numbers to enable the driver to reset the brake bias to a known value of ratio as needed for track conditions and vehicle weight changes. The value in numbers is reproducible. The present disclosure also provides a method and apparatus for retrofitting an existing vehicle with a brake bias adjustment knob assembly which enables the driver of the vehicle to quickly and easily set, adjust, and visually determine the relative brake bias or brake bias setting (i.e., the ratio of front to rear brake biasing or the ratio of side to side brake biasing) of the vehicle before and while driving the vehicle.