MICROCHANNEL LASER HAVING MICROPLASMA GAIN MEDIA
    22.
    发明申请
    MICROCHANNEL LASER HAVING MICROPLASMA GAIN MEDIA 有权
    具有微波增益介质的MICROCHANNEL激光

    公开(公告)号:US20100296978A1

    公开(公告)日:2010-11-25

    申请号:US12682977

    申请日:2008-10-27

    IPC分类号: H01S5/20 H01S5/187 B01J19/08

    摘要: The invention provides microchannel lasers having a microplasma gain medium. Lasers of the invention can be formed in semiconductor materials, and can also be formed in polymer materials. In a microlaser of the invention, high density plasmas are produced in microchannels. The microplasma acts as a gain medium with the electrodes sustaining the plasma in the microchannel. Reflectors are used with the microchannel for obtaining optical feedback to obtain lasing in the microplasma gain medium in devices of the invention for a wide range of atomic and molecular species. Several atomic and molecular gain media will produce sufficiently high gain coefficients that reflectors (mirrors) are not necessary. Microlasers of the invention are based on microplasma generation in channels of various geometries. Preferred embodiment microlaser designs can be fabricated in semiconductor materials, such as Si wafers, by standard photolithographic techniques, or in polymers by replica molding.

    摘要翻译: 本发明提供了具有微质增益介质的微通道激光器。 本发明的激光器可以形成在半导体材料中,也可以形成在聚合物材料中。 在本发明的微型激光器中,在微通道中产生高密度等离子体。 微量体作为增益介质,其中电极在微通道中维持等离子体。 反射器与微通道一起使用以获得光学反馈,以在广泛的原子和分子物种的本发明装置中的微量级增益介质中获得激光。 几个原子和分子增益介质将产生足够高的增益系数,反射器(反射镜)不是必需的。 本发明的微型扫描器基于各种几何形状的通道中的微量生成。 优选实施例微激光器设计可以通过标准光刻技术在半导体材料(例如Si晶片)中或通过复制成型制成聚合物。

    Addressable microplasma devices and arrays with buried electrodes in ceramic
    23.
    发明授权
    Addressable microplasma devices and arrays with buried electrodes in ceramic 有权
    可寻址微型器件和阵列,其中埋置电极在陶瓷中

    公开(公告)号:US07642720B2

    公开(公告)日:2010-01-05

    申请号:US11337969

    申请日:2006-01-23

    IPC分类号: H01J17/04 H01J17/49

    摘要: An array of microcavity plasma devices is formed in a ceramic substrate that provides structure for and isolation of an array of microcavities that are defined in the ceramic substrate. The ceramic substrate isolates the microcavities from electrodes disposed within the ceramic substrate. The electrodes are disposed to ignite a discharge in microcavities in the array of microcavities upon application of a time-varying potential between the electrodes. Embodiments of the invention include electrode and microcavity arrangements that permit addressing of individual microcavities or groups of microcavities. The contour of the microcavity wall allows for the electric field within the microcavity to be shaped.

    摘要翻译: 在陶瓷衬底中形成微腔等离子体器件的阵列,其提供在陶瓷衬底中限定的微腔阵列的结构和隔离。 陶瓷衬底将微腔与设置在陶瓷衬底内的电极隔离。 电极被设置成在施加电极之间的时变电位时,以微腔阵列中的微腔中点燃放电。 本发明的实施例包括允许寻址单个微腔或微腔组的电极和微腔布置。 微腔壁的轮廓允许微腔内的电场成形。

    ADDRESSABLE MICROPLASMA DEVICES AND ARRAYS WITH BURIED ELECTRODES IN CERAMIC
    24.
    发明申请
    ADDRESSABLE MICROPLASMA DEVICES AND ARRAYS WITH BURIED ELECTRODES IN CERAMIC 有权
    可焊接麦克风设备和阵列与陶瓷电极

    公开(公告)号:US20090295288A1

    公开(公告)日:2009-12-03

    申请号:US11337969

    申请日:2006-01-23

    IPC分类号: H01J17/49

    摘要: An array of microcavity plasma devices is formed in a ceramic substrate that provides structure for and isolation of an array of microcavities that are defined in the ceramic substrate. The ceramic substrate isolates the microcavities from electrodes disposed within the ceramic substrate. The electrodes are disposed to ignite a discharge in microcavities in the array of microcavities upon application of a time-varying potential between the electrodes. Embodiments of the invention include electrode and microcavity arrangements that permit addressing of individual microcavities or groups of microcavities. The contour of the microcavity wall allows for the electric field within the microcavity to be shaped.

    摘要翻译: 在陶瓷衬底中形成微腔等离子体器件的阵列,其提供在陶瓷衬底中限定的微腔阵列的结构和隔离。 陶瓷衬底将微腔与设置在陶瓷衬底内的电极隔离。 电极被设置成在施加电极之间的时变电位时,以微腔阵列中的微腔中点燃放电。 本发明的实施例包括允许寻址单个微腔或微腔组的电极和微腔布置。 微腔壁的轮廓允许微腔内的电场成形。

    Polymer microcavity and microchannel devices and fabrication method
    25.
    发明授权
    Polymer microcavity and microchannel devices and fabrication method 有权
    聚合物微腔和微通道器件及其制造方法

    公开(公告)号:US08497631B2

    公开(公告)日:2013-07-30

    申请号:US11698264

    申请日:2007-01-23

    IPC分类号: H01J17/49

    摘要: A microplasma device includes a substrate and either or both of a microchannel or microcavity defined in a polymer layer supported by the substrate. Electrodes arranged with respect to the polymer material can excite a plasma in a discharge medium contained in the microchannel or the microcavity or both. A method of forming a microplasma device places a curable polymer material between a mold having a negative volume impression of microcavities and/or microchannels and a substrate. The polymer is cured and then the mold is separated from the solid polymer.

    摘要翻译: 微血浆装置包括基质和限定在由基底支撑的聚合物层中的微通道或微腔中的任一者或两者。 相对于聚合物材料布置的电极可以在包含在微通道或微腔中的放电介质中或两者中激发等离子体。 形成微等离子体装置的方法将可固化的聚合物材料放置在具有负的体积的微腔和/或微通道的印模和基底之间。 聚合物固化,然后将模具与固体聚合物分离。

    INTERWOVEN WIRE MESH MICROCAVITY PLASMA ARRAYS
    27.
    发明申请
    INTERWOVEN WIRE MESH MICROCAVITY PLASMA ARRAYS 有权
    INTERWOVEN网线微波等离子体阵列

    公开(公告)号:US20110260609A1

    公开(公告)日:2011-10-27

    申请号:US12682973

    申请日:2008-10-27

    摘要: Embodiments of the invention provide for large arrays of microcavity plasma devices that can be made inexpensively, and can produce large area but thin displays or lighting sources Interwoven metal wire mesh, such as interwoven Al mesh, consists of two sets of wires which are interwoven in such a way that the two wire sets cross each other, typically at πght angles (90 degrees) although other patterns are also available Fabrication is accomplished with a simple and inexpensive wet chemical etching process The wires in each set are spaced from one another such that the finished mesh forms an array of openings that can be, for example, square, rectangular or diamond-shaped The size of the openings or microcavities is a function of the diameter of the wires in the mesh and the spacing between the wires in the mesh used to form the array of microcavity plasma devices.

    摘要翻译: 本发明的实施例提供了可以廉价制造并且可以生产大面积但薄的显示器或照明源的微腔等离子体装置的大阵列。交织的金属丝网如交织的Al网由两组电线组成, 尽管其他图案也是可用的,这两种线组彼此交叉的方式,通常是直角(90度)通过简单和便宜的湿式化学蚀刻工艺完成。每组中的导线彼此间隔开,使得 完成的网格形成可以是例如正方形,矩形或菱形的开口阵列。开口或微腔的尺寸是网中线的直径和网中线之间的间距的函数 用于形成微腔等离子体装置阵列。

    ELLIPSOIDAL MICROCAVITY PLASMA DEVICES AND POWDER BLASTING FORMATION
    28.
    发明申请
    ELLIPSOIDAL MICROCAVITY PLASMA DEVICES AND POWDER BLASTING FORMATION 有权
    ELLIPSOIDAL微波等离子体装置和粉末喷砂形成

    公开(公告)号:US20100072893A1

    公开(公告)日:2010-03-25

    申请号:US12235796

    申请日:2008-09-23

    IPC分类号: H01J17/49 H01J9/24

    摘要: The invention provides microcavity plasma devices and arrays that are formed in layers that also seal the plasma medium, i.e., gas(es) and/or vapors. No separate packaging layers are required and additional packaging can be omitted if it is desirable to do so. A preferred microcavity plasma device includes first and second thin layers that are joined together. A half ellipsoid microcavity or plurality of half ellipsoid microcavities is defined in one or both of the first and second thin layers, and electrodes are arranged with respect to the microcavity to excite a plasma within said microcavities upon application of a predetermined voltage to the electrodes. A method for forming a microcavity plasma device having a plurality of half or full ellipsoid microcavities in one or both of first and second thin layers is also provided by a preferred embodiment. The method includes defining a pattern of protective polymer on the first thin layer. Powder blasting forms half ellipsoid microcavities in the first thin layer. The second thin layer is joined to the first layer. The patterning can be conducted lithographically or can be conduced with a simple screen.

    摘要翻译: 本发明提供了形成为也密封等离子体介质即气体和/或蒸汽的层的微腔等离子体装置和阵列。 不需要单独的包装层,如果要这样做,可以省略额外的包装。 优选的微腔等离子体装置包括连接在一起的第一和第二薄层。 半椭圆形微腔或多个半椭圆形微腔被限定在第一和第二薄层中的一个或两个中,并且相对于微腔布置电极,以在对电极施加预定电压时在所述微腔内激发等离子体。 优选实施例也提供了一种在第一和第二薄层中的一个或两个中形成具有多个半或全椭圆形微腔的微腔等离子体装置的方法。 该方法包括在第一薄层上限定保护性聚合物的图案。 粉末喷射在第一薄层中形成半椭圆形微腔。 第二薄层连接到第一层。 图案化可以光刻地进行,或者可以用简单的屏幕进行。

    Roll to roll method of making microdischarge devices and arrays
    29.
    发明授权
    Roll to roll method of making microdischarge devices and arrays 有权
    制作微放电器件和阵列的卷对卷方法

    公开(公告)号:US07638937B2

    公开(公告)日:2009-12-29

    申请号:US11070100

    申请日:2005-03-01

    IPC分类号: H01J63/04 H01J61/09 H01J13/46

    摘要: Roll to roll fabrication methods of the invention enable low cost mass production of microdischarge devices and arrays. A preferred embodiment method of fabricating a discharge device includes providing a dielectric layer sheet, a first electrode, and a second electrode sheet. A cavity is provided through at least a portion of the dielectric layer sheet. At least the dielectric layer sheet and second electrode sheet are rolled together. Another preferred embodiment method of fabrication a discharge device includes method of fabricating a discharge device includes providing a dielectric layer sheet and a cavity through at least a portion of the dielectric layer sheet. A first electrode is disposed as a film of conducting material on the dielectric layer sheet around a rim of the cavity. A second electrode sheet is provided. The dielectric layer sheet is rolled together with first electrode and second electrode sheets.

    摘要翻译: 本发明的卷对卷制造方法能够实现微量放电装置和阵列的低成本批量生产。 制造放电装置的优选实施例的方法包括提供介电层片,第一电极和第二电极片。 通过介电层片材的至少一部分提供空腔。 至少将电介质层片和第二电极片卷成一体。 制造放电器件的另一个优选实施例的方法包括制造放电器件的方法包括通过至少一部分电介质层片提供介电层片和空腔。 第一电极作为导电材料的膜设置在该空腔的边缘周围的介电层片上。 提供第二电极片。 介电层片与第一电极和第二电极片一起卷绕。

    Field emission assisted microdischarge devices
    30.
    发明授权
    Field emission assisted microdischarge devices 有权
    场放电辅助微放电器件

    公开(公告)号:US07126266B2

    公开(公告)日:2006-10-24

    申请号:US10891417

    申请日:2004-07-14

    IPC分类号: H01J1/62

    摘要: Field emission nanostructures assist operation of a microdischarge device. The field emission nanostructures are integrated into the microdischarge device(s) or are situated near an electrode of the microdischarge device(s). The field emission nanostructures reduce operating and ignition voltages compared to otherwise identical devices lacking the field emission nanostructures, while also increasing the radiative output of the microdischarge device(s).

    摘要翻译: 场发射纳米结构有助于微放电器件的工作。 场发射纳米结构集成到微放电器件中或位于微放电器件的电极附近。 与其他相同的缺少场发射纳米结构的器件相比,场致发射纳米结构降低了操作和点火电压,同时也增加了微放电器件的辐射输出。