Abstract:
A multi-mode mobile terminal in an idle state switches between a CDMA system mode and a WCDMA system mode. If the intensity of a WCDMA signal is maintained below a threshold value for longer than a predetermined period in a WCDMA idle state, the acquisition of the CDMA system is attempted, and a WCDMA modem is deactivated if the acquisition of the CDMA system mode was successful. Alternatively, the acquisition of the WCDMA system is attempted at regular intervals in a CDMA idle state, and a CDMA modem is deactivated if the acquisition of the WCDMA system was successful. At least any one of the two modes can be maintained in an activated state when a mode is switched into another mode so that the duration of an interruption of service can be minimized.
Abstract:
A variety of pad arrangements are provided for semiconductor devices for reducing the likelihood of bonding failures, particularly those due to shorts, and/or for reducing the difference in length between bonding wires to decrease signal skew during operation of the semiconductor device and improve signal integrity.
Abstract:
A semiconductor device having a self-aligned gate conductive layer and a method of fabricating the same are disclosed. In embodiments of the present invention, a plurality of field isolation patterns are formed on a semiconductor substrate to define a plurality of active regions in the semiconductor substrate. The density of the field isolation patterns is then increased by, for example, a thermal annealing process. A plurality of gate insulation patterns are then formed on respective of the active regions. A plurality of first conductive patterns are then formed on respective of the gate insulation patterns.
Abstract:
A bidirectional positioning system is disclosed. The system having a plurality of mobile stations radiating ultrasonic signals to notice a physical location of correspondence mobile station and to request additional information, the bidirectional positioning system, including: a plurality of ultrasonic transceivers for receiving the ultrasonic signal from the plurality of mobile stations and measuring a receiving time of the ultrasonic signal with a correspondence mobile station; and a positioning server for computing physical locations of the plurality of mobile stations by collecting three or more receiving times of correspondence mobile station from the plurality of ultrasonic transceivers, storing the computed physical locations of the plurality of mobile stations in a database, generating a radio frequency (RF) information signal to have information about computed physical location of the mobile stations by receiving the ultrasonic signal from the plurality of ultrasonic transceivers and transmitting the RF information signal to the mobile stations.
Abstract:
Disclosed is a liquid crystal display comprising a first substrate made of an insulating material; pixel electrodes formed on the first substrate, the pixel electrodes having a first aperture pattern; a second substrate made of an insulating material and provided opposing the first substrate at a predetermined distance; a common electrode formed on the second substrate, the common electrode having a second aperture pattern; and a liquid crystal layer made of liquid crystal material that is injected between the first and second substrates, wherein either or both of the pixel electrodes and the common electrode include stepped portions that protrude a predetermined distance away from the substrates, between apertures of the first and/or second aperture patterns.
Abstract:
A non-contacting method of forming an alignment layer on a substrate used in liquid crystal displays which includes the steps of cleaning a substrate surface, disposing a solution having a prepolymer, such as polyamic acid or a resin and a curing agent, and solvent on the substrate surface, evaporating the solvent, and positioning an ultraviolet light source proximally near the substrate surface. A linear polarizer is positioned between the ultraviolet light source and the substrate surface. Ultraviolet light is projected through the polarizer onto the substrate surface to simultaneously molecularly align the polymer segments as the prepolymer is polymerized to form an alignment layer on the substrate. Adjusting the direction of polarization and the angle of incidence of the ultraviolet light source allows for generation of an alignment layer with a corresponding pre-tilt angle.
Abstract:
First alignment is performed by forming an alignment layer that includes a photopolymerizable monomer or oligomer on a substrate and the like, introducing liquid crystal, and bringing the liquid crystal into contact with the alignment layer including the photopolymerizable monomer or oligomer.The liquid crystal is then subjected to secondary alignment by photopolymerizing the photopolymerizable monomer or oligomer including the alignment layer to form an alignment regulator in a state in which an electric field is applied to the liquid crystal to change the alignment of the liquid crystal.
Abstract:
Provided is a method of performing time synchronization using a navigation device. The method includes: (a) performing time synchronization between a GPS satellite and a navigation device by receiving GPS signals by a navigation device from at least one GPS satellite; (b) establishing an interface between the navigation device and a time-using device; (c) setting conditions for transmitting time information to the navigation device; and (d) performing time synchronization between the navigation device and the time-using device by transmission of time information from the navigation device to the time-using device.
Abstract:
Aspects of the present invention provide a method of inkjet printing pixels, the method including: applying ink to a plurality of pixels using an inkjet printer; calculating a Transmittance Measurement System (TMS) value of each of the pixels, by measuring an amount of light transmitted through each pixel before and after the application of the ink; calculating a TMS difference between the TMS values of two adjacent pixels; and adjusting the amount of ink applied to each pixel, on the basis of an average of the TMS values of two adjacent pixels, when the absolute value of one of the TMS differences is larger than a reference value.