摘要:
A method and apparatus for measuring a parameter of a flow passing through a pipe is provided, wherein the apparatus includes at least two spatial array of sensors disposed at different axial locations along the pipe, wherein each of the sensors provide a signal indicative of unsteady pressure created by coherent structures convecting with the flow within the pipe at a corresponding axial location of the pipe. The apparatus also includes a signal processor configured to determine the flow rate at the circumference location of each sensor array in response to the respective measured unsteady pressures. The signal processor compares the velocity of the flow at each respective location and provides a signal indicative the presence of solids settled at the bottom of the pipe and/or the level of the settled solids in the pipe, in response to an uncharacteristic increase in the velocity of a lower portion of the flow in comparison to the velocity measured above the lower portion of the flow.
摘要:
An apparatus measures the speed of sound and/or vortical disturbances propagating in a fluid flow to determine a parameter of the flow propagating through a pipe. The apparatus includes a sensing device that includes an array of pressure sensors used to measure the acoustic and convective pressure variations in the flow to determine a desired parameter. The sensing device includes a unitary strap having a plurality of bands disposed parallel to each other. The bands are interconnected by cross members to maintain the bands a predetermined distance apart. Each of the bands having a strip of piezoelectric film material mounted along a substantial length of the bands. The piezoelectric film material provides a signal indicative of the unsteady pressures within the pipe. The sensing device includes a conductive shield around the multi-band strap and the piezoelectric film material to provide a grounding shield.
摘要:
A tunable optical filter has a large diameter cane waveguide with “side-holes” in the cane cross-section that reduce the force required to compress the large diameter optical waveguide without overly compromising the buckling strength thereof. The large diameter optical waveguide has a cross-section of at least about 0.3 millimeters, including at least one inner core, a Bragg grating arranged therein, a cladding surrounding the inner core, and a structural configuration for providing a reduced bulk modulus of compressibility and maintaining the anti-buckling strength of the large diameter optical waveguide. The structural configuration reduces the cross-sectional area of the large diameter optical waveguide. These side holes reduce the amount of glass that needs to be compressed, but retains the large diameter.
摘要:
An optical sensing device including a force-applying assembly for providing a force and a Fabry-Perot (FP) element including a large-diameter waveguide having a core and having a cavity in line with the core, the cavity having reflective surfaces and having an optical path length related to the distance between the reflective surfaces, the FP element being coupled to the force so that the optical path length changes according to the force, the FP element for providing an output optical signal containing information about a parameter that relates to the force. Sometimes the large-diameter waveguide is formed by collapsing a glass tube, having a bore and having an outer diameter of about one millimeter, onto a pair of optical fibers arranged in tandem in the bore and separated by a predetermined distance, and respective end faces of the optical fibers form the cavity and are coated with a wholly or partially reflective material.
摘要:
A strain-isolated bragg grating temperature sensor includes an optical sensing element 20,600 which includes an optical fiber 10 having at least one Bragg grating 12 disposed therein which is encased within and fused to at least a portion of a glass capillary tube 20 and/or a large diameter waveguide grating 600 having a core and a wide cladding and having the grating 12 disposed therein, which senses temperature changes but is substantially not sensitive to strains on the element caused by the fiber or other effects. Light 14 is incident on the grating 12 and light 16 is reflected at a reflection wavelength λ1. The shape of the sensing element 20,600 may be other geometries and/or more than one concentric tube may be used or more than one grating or pair of gratings may be used or more than one fiber or optical core may be used. At least a portion of the element 20,600 may be doped between a pair of gratings 150,152, disposed therein to form a temperature tunable laser or the grating 12 or gratings 150,152 may be constructed as a temperature tunable DFB laser disposed in the element. Also, the element may have an inner or outer tapered regions 22,27, respectively, to provide strain relief and/or added pull strength for the fiber 10. Further, the fiber 10 and the tube 20 may be made of different coefficients of thermal expansion for increased sensitivity.
摘要:
A fiber grating pressure sensor includes an optical sensing element which includes an optical fiber having a Bragg grating impressed therein which is encased within and fused to at least a portion of a glass capillary tube and/or a large diameter waveguide grating having a core and a wide cladding. Light is incident on the grating and light is reflected from the grating at a reflection wavelength &lgr;1. The sensing element may be used by itself as a sensor or located within a housing. When external pressure P increases, the grating is compressed and the reflection wavelength &lgr;1 changes. The shape of the sensing element may have other geometries, e.g., a “dogbone” shape, so as to enhance the sensitivity of shift in &lgr;1 due to applied external pressure and may be fused to an outer shell.
摘要:
A compression-tuned fiber Bragg grating based reconfigurable wavelength add/drop module has a compression force assembly and an all-glass Bragg grating compression unit having gratings spaced along an axis of compression. The compression force assembly responds to a control electronics signal containing information about a selected wavelength of a channel to be added to or dropped from an optical traffic signal, for providing a compression force applied along the axis of compression. The compression unit responds to the optical traffic signal and the compression force, for providing an all-glass Bragg grating compression unit optical signal having the selected wavelength of the channel to be added to or dropped from the optical traffic signal. The compression unit optical signal may include either the traffic with an added reflected channel(s), or a dropped reflected channel(s). The compression unit is a “dogbone” structure having either a glass tube with an optical fiber fused therein, or a single large diameter waveguide having a core. The core of the optical fiber or waveguide has the gratings spaced therein. The axis of compression is parallel with the longitudinal axis of the dogbone structure.
摘要:
A fluid diffusion resistant tube-encased fiber grating pressure sensor includes an optical fiber 10 having a Bragg grating 12 impressed therein which is encased within a sensing element, such as a glass capillary shell 20. A fluid blocking coating 30 is disposed on the outside surface of the capillary shell to prevent the diffusion of fluids, such as water molecules from diffusing into the shell. The fluid diffusion resistant fiber optic sensor reduces errors caused by the diffusion of water into the shell when the sensor is exposed to harsh conditions.
摘要:
A compression-tuned Bragg grating-based laser 800 includes a pair of optical grating elements 802,804 wherein at least one of the grating elements is tunable by a compression device 812,814. The grating elements may include either an optical fiber 10 having at least one Bragg grating 12 impressed therein encased within and fused to at least a portion of a glass capillary tube 20 or a large diameter waveguide grating element 600 having a core and a wide cladding. The tunable grating element(s) 802,804 are axially compressed, which causes a shift in the reflection wavelength of the gratings 807,809 without buckling the element. The shape of the element may be other geometries (e.g., a “dogbone” shape) and/or more than one grating or pair of gratings may be used and more than one fiber 10 or core 612 may be used. A gain element, such as Erbium doped fiber, is optical disposed between the grating elements to provide the lasing cavity.
摘要:
A pressure-isolated Bragg grating temperature sensor includes an optical element which includes an optical fiber having at least one Bragg grating disposed therein. The Bragg grating is encased within and fused to at least a portion of an inner glass capillary tube, or comprises a large diameter waveguide grating having a core and a wide cladding and having the grating disposed therein, encased within an outer tube to form a chamber. An extended portion of the sensing element that has the grating therein extends inwardly into the chamber which allows the grating to sense temperature changes but isolates the grating from external pressure. More than one grating or pair of gratings may be used and more than one fiber or optical core may be used. At least a portion of the sensing element may be doped between a pair of gratings to form a temperature tuned laser, or the grating or gratings may be configured as a tunable DFB laser disposed in the sensing element.