摘要:
A printing surface includes a substrate having latching electrodes on a first surface, a spacer layer on the first surface of the substrate, the spacer layer patterned to form wells such that the latching electrodes reside in the wells, a deformable membrane, the membrane having conductive regions, on the spacer layer to enclose the wells, each enclosed well and its associated region of the membrane forming a pixel membrane, and actuation circuitry to actuate the electrodes to cause selected ones of the pixel membranes to remain in a deflected state when the pixel membranes receive an impulse to return to an undeflected state.
摘要:
A printing surface includes a substrate having latching electrodes on a first surface, a spacer layer on the first surface of the substrate, the spacer layer patterned to form wells such that the latching electrodes reside in the wells, a deformable membrane, the membrane having conductive regions, on the spacer layer to enclose the wells, each enclosed well and its associated region of the membrane forming a pixel membrane, and actuation circuitry to actuate the electrodes to cause selected ones of the pixel membranes to remain in a deflected state when the pixel membranes receive an impulse to return to an undeflected state.
摘要:
A high fill-factor photosensor array is formed comprising a P-layer, an I-layer, one or more semiconductor structures adjacent to the I-layer and each coupled to a N-layer, an electrically conductive electrode formed on top of the P-layer, and an additional semiconductor structure, adjacent to the N-layer and which is electrically connected to a voltage bias source. The bias voltage applied to the additional semiconductor structure charges the additional semiconductor structure, thereby creating a tunneling effect between the N-layer and the P-layer, wherein electrons leave the N-layer and reach the P-layer and the electrically conductive layer. The electrons then migrate and distribute uniformly throughout the electrically conductive layer, which ensures a uniform bias voltage across to the entire photosensor array. The biasing scheme in this invention allows to achieve mass production of photosensors without the use of wire bonding.
摘要:
Method for integrally forming high Q tunable capacitors and high Q inductors on a substrate are described. A variable capacitors may employ stops between a moveable electrode and a fixed electrode to reduce and/or prevent electrical shorting between the moveable and fixed electrode. A capacitor may employ a split bottom electrode structure to removing a suspension portion of a moveable top electrode from an RF part of a circuit.
摘要:
A high fill-factor photosensor array is formed comprising a P-layer, an I-layer, one or more semiconductor structures adjacent to the I-layer and each coupled to a N-layer, an electrically conductive electrode formed on top of the P-layer, and an additional semiconductor structure, adjacent to the N-layer and which is electrically connected to a voltage bias source. The bias voltage applied to the additional semiconductor structure charges the additional semiconductor structure, thereby creating a tunneling effect between the N-layer and the P-layer, wherein electrons leave the N-layer and reach the P-layer and the electrically conductive layer. The electrons then migrate and distribute uniformly throughout the electrically conductive layer, which ensures a uniform bias voltage across to the entire photosensor array. The biasing scheme in the invention allows to achieve mass production of photosensors without the use of wire bonding.