Abstract:
A self-aligned, thin-film, top-gate transistor and method of manufacturing same are disclosed. A first print-patterned mask is formed over a metal layer by digital lithography, for example by printing with a phase change material using a droplet ejector. The metal layer is then etched using the first print-patterned mask to form source and drain electrodes. A semiconductive layer and an insulative layer are formed thereover. A layer of photosensitive material is then deposited and exposed through the substrate, with the source and drain electrodes acting as masks for the exposure. Following development of the photosensitive material, a gate metal layer is deposited. A second print-patterned mask is then formed over the device, again by digital lithography. Etching and removal of the photosensitive material leaves the self-aligned top-gate electrode.
Abstract:
Xerographic micro-assembler systems and methods are disclosed. The systems and methods involve manipulating charge-encoded micro-objects. The charge encoding identifies each micro-object and specifies its orientation for sorting. The micro-objects are sorted in a sorting unit so that they have defined positions and orientations. The sorting unit has the capability of electrostatically and magnetically manipulating the micro-objects based on their select charge encoding. The sorted micro-objects are provided to an image transfer unit. The image transfer unit is adapted to receive the sorted micro-objects, maintain them in their sorted order and orientation, and deliver them to a substrate. Maintaining the sorted order as the micro-objects are delivered to the substrate may be accomplished through the use of an electrostatic image, as is done in xerography. The substrate with the micro-objects is further processed to interconnect the micro-objects—through electrical wiring, for example—to form the final micro-assembly.
Abstract:
A contact spring applicator is provided which includes an applicator substrate, a removable encapsulating layer and a plurality of contact springs embedded in the removable encapsulating layer. The contact springs are positioned such that a bond pad on each contact spring is adjacent to an upper surface of the removable encapsulating layer. The contact spring applicator may also include an applicator substrate, a release layer, a plurality of unreleased contact springs on the release layer and a bond pad at an anchor end of each contact spring. The contact spring applicators apply contact springs to an integrated circuit chip, die or package or to a probe card by aligning the bond pads with bond pad landings on the receiving device. The bond pads are adhered to the bond pad landings. The encapsulating or release layer is then removed to separate the contact springs from the contact spring applicator substrate.
Abstract:
A self-aligned, thin-film, top-gate transistor and method of manufacturing same are disclosed. A first print-patterned mask is formed over a metal layer by digital lithography, for example by printing with a phase change material using a droplet ejector. The metal layer is then etched using the first print-patterned mask to form source and drain electrodes. A semiconductive layer and an insulative layer are formed thereover. A layer of photosensitive material is then deposited and exposed through the substrate, with the source and drain electrodes acting as masks for the exposure. Following development of the photosensitive material, a gate metal layer is deposited. A second print-patterned mask is then formed over the device, again by digital lithography. Etching and removal of the photosensitive material leaves the self-aligned top-gate electrode.
Abstract:
Micro-machined (e.g., stress-engineered spring) structures are produced by forming a release layer, forming a partially or fully encapsulated beam/spring structure, and then releasing the beam/spring structure by etching the release layer. The encapsulation structure protects the beam/spring during release, so both the release layer and the beam/spring can be formed using plating and/or using the same material. The encapsulation structure can be metal, resist, polymer, oxide, or nitride, and may be removed after the release process, or retained as part of the completed micro-machined structure.
Abstract:
Execution behavior for processes within a virtual machine is recorded for subsequent replay. The execution behavior comprises a detailed, low-level recording of state changes for processes within the virtual machine. The low-level recording is processed via replay to produce a sliced recording that conforms to time, abstraction, and security requirements for a specific replay scenario. Multiple stages of replay may be arbitrarily stacked to generate different crosscut versions of a common low-level recording.
Abstract:
A stress-engineered microspring is formed generally in the plane of a substrate. A nanowire (or equivalently, a nanotube) is formed at the tip thereof, also in the plane of the substrate. Once formed, the length of the nanowire may be defined, for example photolithographically. A sacrificial layer underlying the microspring may then be removed, allowing the engineered stresses in the microspring to cause the structure to bend out of plane, elevating the nanowire off the substrate and out of plane. Use of the nanowire as a contact is thereby provided. The nanowire may be clamped at the tip of the microspring for added robustness. The nanowire may be coated during the formation process to provide additional functionality of the final device.
Abstract:
An addressable imaging belt for use in printing applications having embedded anisotropically conductive addressable islands configured for electric contact on a first side of the belt by a write head consisting of an array of compliant cantilevered fingers with contact pads/points to which a voltage can be applied. The conductive addressable islands electrically isolated from one another and extending substantially through the thickness of the belt in order to allow charge to flow through the belt towards a second side of the belt, in order to form a latent electrostatic image on the second side and develop this latent image by attracting colorized toner or other electrically charged particles to the second side.
Abstract:
A plurality of vertically spaced-apart microsprings are provided to increase microspring contact force, contact area, contact reliability, and contact yield. The microspring material is deposited, either as a single layer or as a composite of multiple sub layers, to have a tailored stress differential along its cross-section. A lower microspring may be made to push up against an upper microspring to provide increased contact force, or push down against a substrate to ensure release during manufacture. The microsprings may be provided with similar stress differentials or opposite stress differentials to obtain desired microspring profiles and functionality. Microsprings may also be physically connected at their distal ends for increased contact force. The microsprings may be formed of electrically conductive material or coated with electrically conductive material for probe card and similar applications.
Abstract:
A curved spring structure includes a base section extending parallel to the substrate surface, a curved cantilever section bent away from the substrate surface, and an elongated section extending from the base section along the substrate surface under the cantilevered section. The spring structure includes a spring finger formed from a self-bending material film (e.g., stress-engineered metal, bimorph/bimetallic) that is patterned and released. A cladding layer is then electroplated and/or electroless plated onto the spring finger for strength. The elongated section is formed from plating material deposited simultaneously with cladding layers. To promote the formation of the elongated section, a cementation layer is provided under the spring finger to facilitate electroplating, or the substrate surface is pre-treated to facilitate electroless plating.