Pattern-print thin-film transistors with top gate geometry
    1.
    发明授权
    Pattern-print thin-film transistors with top gate geometry 有权
    具有顶栅几何形状的图案印刷薄膜晶体管

    公开(公告)号:US07884361B2

    公开(公告)日:2011-02-08

    申请号:US12817127

    申请日:2010-06-16

    Abstract: A self-aligned, thin-film, top-gate transistor and method of manufacturing same are disclosed. A first print-patterned mask is formed over a metal layer by digital lithography, for example by printing with a phase change material using a droplet ejector. The metal layer is then etched using the first print-patterned mask to form source and drain electrodes. A semiconductive layer and an insulative layer are formed thereover. A layer of photosensitive material is then deposited and exposed through the substrate, with the source and drain electrodes acting as masks for the exposure. Following development of the photosensitive material, a gate metal layer is deposited. A second print-patterned mask is then formed over the device, again by digital lithography. Etching and removal of the photosensitive material leaves the self-aligned top-gate electrode.

    Abstract translation: 公开了一种自对准薄膜顶栅晶体管及其制造方法。 通过数字光刻在金属层上形成第一印刷图案掩模,例如通过使用液滴喷射器用相变材料进行印刷。 然后使用第一印刷图案化掩模蚀刻金属层以形成源极和漏极。 在其上形成半导体层和绝缘层。 然后将一层感光材料沉积并暴露通过基底,源极和漏极用作曝光的掩模。 在感光材料的显影之后,沉积栅极金属层。 然后再次通过数字光刻法在器件上形成第二印刷图案掩模。 蚀刻和去除感光材料离开自对准顶栅电极。

    XEROGRAPHIC MICRO-ASSEMBLER
    2.
    发明申请

    公开(公告)号:US20080089705A1

    公开(公告)日:2008-04-17

    申请号:US11959030

    申请日:2007-12-18

    Abstract: Xerographic micro-assembler systems and methods are disclosed. The systems and methods involve manipulating charge-encoded micro-objects. The charge encoding identifies each micro-object and specifies its orientation for sorting. The micro-objects are sorted in a sorting unit so that they have defined positions and orientations. The sorting unit has the capability of electrostatically and magnetically manipulating the micro-objects based on their select charge encoding. The sorted micro-objects are provided to an image transfer unit. The image transfer unit is adapted to receive the sorted micro-objects, maintain them in their sorted order and orientation, and deliver them to a substrate. Maintaining the sorted order as the micro-objects are delivered to the substrate may be accomplished through the use of an electrostatic image, as is done in xerography. The substrate with the micro-objects is further processed to interconnect the micro-objects—through electrical wiring, for example—to form the final micro-assembly.

    Abstract translation: 公开了静电印刷微组装系统和方法。 系统和方法涉及操纵电荷编码的微物体。 电荷编码识别每个微物体并指定其排列方向。 微物体在分类单元中排序,使得它们具有定义的位置和取向。 分选单元具有基于其选择电荷编码的静电和磁性操纵微物体的能力。 分类的微物体被提供给图像传送单元。 图像传送单元适于接收分类的微物体,将它们保持在排列顺序和方位,并将其传送到基底。 将排序的顺序作为微物体传送到基底可以通过使用静电图像来实现,如在静电复印中所做的那样。 具有微物体的衬底被进一步处理以使例如微通孔电线互连,以形成最终的微组件。

    Patterned-print thin-film transistors with top gate geometry
    4.
    发明申请
    Patterned-print thin-film transistors with top gate geometry 有权
    具有顶栅几何形状的图案印刷薄膜晶体管

    公开(公告)号:US20070026585A1

    公开(公告)日:2007-02-01

    申请号:US11193847

    申请日:2005-07-28

    Abstract: A self-aligned, thin-film, top-gate transistor and method of manufacturing same are disclosed. A first print-patterned mask is formed over a metal layer by digital lithography, for example by printing with a phase change material using a droplet ejector. The metal layer is then etched using the first print-patterned mask to form source and drain electrodes. A semiconductive layer and an insulative layer are formed thereover. A layer of photosensitive material is then deposited and exposed through the substrate, with the source and drain electrodes acting as masks for the exposure. Following development of the photosensitive material, a gate metal layer is deposited. A second print-patterned mask is then formed over the device, again by digital lithography. Etching and removal of the photosensitive material leaves the self-aligned top-gate electrode.

    Abstract translation: 公开了一种自对准薄膜顶栅晶体管及其制造方法。 通过数字光刻在金属层上形成第一印刷图案掩模,例如通过使用液滴喷射器用相变材料进行印刷。 然后使用第一印刷图案化掩模蚀刻金属层以形成源极和漏极。 在其上形成半导体层和绝缘层。 然后将一层感光材料沉积并暴露通过基底,源极和漏极用作曝光的掩模。 在感光材料的显影之后,沉积栅极金属层。 然后再次通过数字光刻法在器件上形成第二印刷图案掩模。 蚀刻和去除感光材料离开自对准顶栅电极。

    System and Method of Manipulating Virtual Machine Recordings for High-Level Execution and Replay
    6.
    发明申请
    System and Method of Manipulating Virtual Machine Recordings for High-Level Execution and Replay 有权
    用于高级执行和重放的操作虚拟机记录的系统和方法

    公开(公告)号:US20120239987A1

    公开(公告)日:2012-09-20

    申请号:US13049637

    申请日:2011-03-16

    CPC classification number: G06F9/45533 G06F11/3636 G06F11/366

    Abstract: Execution behavior for processes within a virtual machine is recorded for subsequent replay. The execution behavior comprises a detailed, low-level recording of state changes for processes within the virtual machine. The low-level recording is processed via replay to produce a sliced recording that conforms to time, abstraction, and security requirements for a specific replay scenario. Multiple stages of replay may be arbitrarily stacked to generate different crosscut versions of a common low-level recording.

    Abstract translation: 记录虚拟机中进程的执行行为,以便后续重播。 执行行为包括虚拟机内进程的状态变化的详细低级记录。 通过重放来处理低级记录,以产生符合特定重播场景的时间,抽象和安全要求的分片记录。 可以任意堆叠多个重放阶段以产生普通低级记录的不同横切版本。

    Microsprings Having Nanowire Tip Structures
    7.
    发明申请
    Microsprings Having Nanowire Tip Structures 审中-公开
    具有纳米线尖端结构的微管

    公开(公告)号:US20110167526A1

    公开(公告)日:2011-07-07

    申请号:US13045042

    申请日:2011-03-10

    CPC classification number: B81C1/0015 B81B2203/019 B81B2207/07 B82Y10/00

    Abstract: A stress-engineered microspring is formed generally in the plane of a substrate. A nanowire (or equivalently, a nanotube) is formed at the tip thereof, also in the plane of the substrate. Once formed, the length of the nanowire may be defined, for example photolithographically. A sacrificial layer underlying the microspring may then be removed, allowing the engineered stresses in the microspring to cause the structure to bend out of plane, elevating the nanowire off the substrate and out of plane. Use of the nanowire as a contact is thereby provided. The nanowire may be clamped at the tip of the microspring for added robustness. The nanowire may be coated during the formation process to provide additional functionality of the final device.

    Abstract translation: 应力工程微球通常在基底的平面上形成。 纳米线(或等效地,纳米管)也在其顶端形成在基板的平面中。 一旦形成,可以例如光刻地限定纳米线的长度。 然后可以去除位于微弹簧下面的牺牲层,允许微弹簧中的工程应力使结构弯曲出平面,从而使纳米线离开基底并离开平面。 由此提供了使用纳米线作为接触。 可以将纳米线夹在微弹簧的末端以增加坚固性。 在形成过程中可以涂覆纳米线以提供最终装置的附加功能。

    ANISOTROPICALLY CONDUCTIVE BACKSIDE ADDRESSABLE IMAGING BELT FOR USE WITH CONTACT ELECTROGRAPHY
    8.
    发明申请
    ANISOTROPICALLY CONDUCTIVE BACKSIDE ADDRESSABLE IMAGING BELT FOR USE WITH CONTACT ELECTROGRAPHY 有权
    使用联系电子技术的非均匀导电背面可寻址成像带

    公开(公告)号:US20090322845A1

    公开(公告)日:2009-12-31

    申请号:US12145677

    申请日:2008-06-25

    CPC classification number: B41J2/41 G03G15/32

    Abstract: An addressable imaging belt for use in printing applications having embedded anisotropically conductive addressable islands configured for electric contact on a first side of the belt by a write head consisting of an array of compliant cantilevered fingers with contact pads/points to which a voltage can be applied. The conductive addressable islands electrically isolated from one another and extending substantially through the thickness of the belt in order to allow charge to flow through the belt towards a second side of the belt, in order to form a latent electrostatic image on the second side and develop this latent image by attracting colorized toner or other electrically charged particles to the second side.

    Abstract translation: 一种用于印刷应用的可寻址成像带,其具有嵌入的各向异性导电可寻址岛,其配置用于通过由柔性悬臂指状物阵列组成的写头组成,用于在带的第一侧上进行电接触,所述写头具有可被施加电压的接触焊盘/点 。 导电寻址岛彼此电隔离并且基本上延伸穿过带的厚度,以便允许电荷通过带流向带的第二侧,以在第二面上形成静电潜像并显影 该潜像通过将着色调色剂或其它带电粒子吸引到第二侧。

    Vertically spaced plural microsprings
    9.
    发明申请
    Vertically spaced plural microsprings 有权
    垂直间隔的多个微弹簧

    公开(公告)号:US20070125486A1

    公开(公告)日:2007-06-07

    申请号:US11292474

    申请日:2005-12-02

    Abstract: A plurality of vertically spaced-apart microsprings are provided to increase microspring contact force, contact area, contact reliability, and contact yield. The microspring material is deposited, either as a single layer or as a composite of multiple sub layers, to have a tailored stress differential along its cross-section. A lower microspring may be made to push up against an upper microspring to provide increased contact force, or push down against a substrate to ensure release during manufacture. The microsprings may be provided with similar stress differentials or opposite stress differentials to obtain desired microspring profiles and functionality. Microsprings may also be physically connected at their distal ends for increased contact force. The microsprings may be formed of electrically conductive material or coated with electrically conductive material for probe card and similar applications.

    Abstract translation: 提供多个垂直间隔开的微弹簧以增加微弹簧接触力,接触面积,接触可靠性和接触屈服。 微珠材料作为单层或作为多个子层的复合材料沉积,沿其横截面具有定制的应力差。 可以制备较低的微弹簧以向上推动上部微型弹性体以提供增加的接触力,或者向下推动抵靠基底以确保制造过程中的释放。 可以提供类似的应力差异或相反的应力差异以获得所需的微弹体轮廓和功能性。 微弹簧也可以在其远端物理连接以增加接触力。 微弹簧可以由导电材料形成或涂覆有用于探针卡和类似应用的导电材料。

    Curved spring structure with elongated section located under cantilevered section
    10.
    发明申请
    Curved spring structure with elongated section located under cantilevered section 有权
    弯曲弹簧结构,细长部分位于悬臂部分下方

    公开(公告)号:US20070069751A1

    公开(公告)日:2007-03-29

    申请号:US11549066

    申请日:2006-10-12

    CPC classification number: H01G5/18 G01R1/06738

    Abstract: A curved spring structure includes a base section extending parallel to the substrate surface, a curved cantilever section bent away from the substrate surface, and an elongated section extending from the base section along the substrate surface under the cantilevered section. The spring structure includes a spring finger formed from a self-bending material film (e.g., stress-engineered metal, bimorph/bimetallic) that is patterned and released. A cladding layer is then electroplated and/or electroless plated onto the spring finger for strength. The elongated section is formed from plating material deposited simultaneously with cladding layers. To promote the formation of the elongated section, a cementation layer is provided under the spring finger to facilitate electroplating, or the substrate surface is pre-treated to facilitate electroless plating.

    Abstract translation: 弯曲弹簧结构包括平行于基板表面延伸的基部部分,弯曲的远离基板表面的弯曲悬臂部分,以及从基部沿着悬臂部分下方的基板表面延伸的细长部分。 弹簧结构包括由图案化和释放的自弯曲材料膜(例如,应力工程金属,双晶型/双金属)形成的弹簧指状物。 然后将包覆层电镀和/或无电镀在弹簧手指上用于强度。 细长部分由与包覆层同时沉积的电镀材料形成。 为了促进细长部分的形成,在弹簧指状物下方设置有胶结层以促进电镀,或者基板表面被预处理以便于化学镀。

Patent Agency Ranking