摘要:
The graphene device may include an upper oxide layer on at least one embedded gate, and a graphene channel and a plurality of electrodes on the upper oxide layer. The at least one embedded gate may be formed on the substrate. The graphene channel may be formed on the plurality of electrodes, or the plurality of electrodes may be formed on the graphene channel.
摘要:
Example embodiments relate to methods of manufacturing and transferring a larger-sized graphene layer. A method of transferring a larger-sized graphene layer may include forming a graphene layer, a protection layer, and an adhesive layer on a substrate and removing the substrate. The graphene layer may be disposed on a transferring substrate by sliding the graphene layer onto the transferring substrate.
摘要:
Methods of fixing graphene using a laser beam and methods of manufacturing an electronic device are provided, the method of fixing graphene includes fixing a defect of a graphene nanoribbon by irradiating the laser beam onto the graphene nanoribbon.
摘要:
Example embodiments relate to methods of manufacturing and transferring a larger-sized graphene layer. A method of transferring a larger-sized graphene layer may include forming a graphene layer, a protection layer, and an adhesive layer on a substrate and removing the substrate. The graphene layer may be disposed on a transferring substrate by sliding the graphene layer onto the transferring substrate.
摘要:
Provided is a graphene device and a method of manufacturing the same. The graphene device may include an upper oxide layer on at least one embedded gate, and a graphene channel and a plurality of electrodes on the upper oxide layer. The at least one embedded gate may be formed on the substrate. The graphene channel may be formed on the plurality of electrodes, or the plurality of electrodes may be formed on the graphene channel.
摘要:
A graphene electronic device may include a silicon substrate, connecting lines on the silicon substrate, a first electrode and a second electrode on the silicon substrate, and an interlayer dielectric on the silicon substrate. The interlayer dielectric may be configured to cover the connecting lines and the first and second electrodes and the interlayer dielectric may be further configured to expose at least a portion of the first and second electrodes. The graphene electronic device may further include an insulating layer on the interlayer dielectric and a graphene layer on the insulating layer, the graphene layer having a first end and a second end. The first end of the graphene layer may be connected to the first electrode and the second end of the graphene layer may be connected to the second electrode.
摘要:
Methods of fabricating graphene using an alloy catalyst may include forming an alloy catalyst layer including nickel on a substrate and forming a graphene layer by supplying hydrocarbon gas onto the alloy catalyst layer. The alloy catalyst layer may include nickel and at least one selected from the group consisting of copper, platinum, iron and gold. When the graphene is fabricated, a catalyst metal that reduces solubility of carbon in Ni may be used together with Ni in the alloy catalyst layer. An amount of carbon that is dissolved may be adjusted and a uniform graphene monolayer may be fabricated.
摘要:
A method of transferring graphene includes patterning an upper surface of a substrate to form at least one trench therein, providing a graphene layer on the substrate, the graphene layer including an adhesive liquid thereon, pressing the graphene layer with respect to the substrate, and removing the adhesive liquid by drying the substrate.
摘要:
Inverter logic devices include a gate oxide on a back substrate, a first graphene layer and a second graphene layer separated from each other on the gate oxide, a first electrode layer and a first semiconductor layer separated from each other on the first graphene layer, a second electrode layer and a second semiconductor layer separated from each other on the second graphene layer, and an output electrode on the first and second semiconductor layers and configured to output an output signal. The first semiconductor layer is doped with a different type of impurities selected from n-type impurities and p-type impurities than the second semiconductor layer.
摘要:
According to example embodiments, a graphene switching devices has a tunable barrier. The graphene switching device may include a gate substrate, a gate dielectric on the gate substrate, a graphene layer on the gate dielectric, a semiconductor layer and a first electrode sequentially stacked on a first region of the graphene layer, and a second electrode on a second region of the graphene layer. The semiconductor layer may be doped with one of an n-type impurity and a p-type impurity. The semiconductor layer may face the gate substrate with the graphene layer being between the semiconductor layer and the gate substrate. The second region of the graphene layer may be separated from the first region on the graphene layer.