Method for manufacturing a membrane sensor
    21.
    发明授权
    Method for manufacturing a membrane sensor 有权
    膜传感器的制造方法

    公开(公告)号:US07494839B2

    公开(公告)日:2009-02-24

    申请号:US11011888

    申请日:2004-12-13

    IPC分类号: H01L21/00

    摘要: A manufacturing method for a micromechanical semiconductor element includes providing on a semiconductor substrate a patterned stabilizing element having at least one opening. The opening is arranged such that it allows access to a first region in the semiconductor substrate, the first region having a first doping. Furthermore, a selective removal of at least a portion of the semiconductor material having the first doping out of the first region of the semiconductor substrate is provided. In addition, a membrane is produced above the first region using a first epitaxy layer applied on the stabilizing element. In a further method step, at least a portion of the first region is used to produce a cavity underneath the stabilizing element. In this manner, the present invention provides for the production of the patterned stabilizing element by means of a second epitaxy layer, which is applied on the semiconductor substrate.

    摘要翻译: 微机电半导体元件的制造方法包括在半导体衬底上提供具有至少一个开口的图案化稳定元件。 开口被布置成使得其允许接近半导体衬底中的第一区域,第一区域具有第一掺杂。 此外,提供了选择性地去除半导体衬底的第一区域中具有第一掺杂的半导体材料的至少一部分。 此外,使用施加在稳定元件上的第一外延层,在第一区域上方产生膜。 在另一方法步骤中,第一区域的至少一部分用于在稳定元件下方产生空腔。 以这种方式,本发明提供了通过施加在半导体衬底上的第二外延层来生产图案化的稳定元件。

    Sensor element with trenched cavity
    22.
    发明授权
    Sensor element with trenched cavity 有权
    带沟槽的传感器元件

    公开(公告)号:US07354786B2

    公开(公告)日:2008-04-08

    申请号:US11223592

    申请日:2005-09-08

    IPC分类号: H01L21/00

    摘要: A micromechanical sensor element and a method for the production of a micromechanical sensor element that is suitable, for example in a micromechanical component, for detecting a physical quantity. Provision is made for the sensor element to include a substrate, an access hole and a buried cavity, at least one of the access holes and the cavity being produced in the substrate by a trench etching and/or, in particular, an isotropic etching process. The trench etching process includes different trenching (trench etching) steps which may be divided into a first phase and a second phase. Thus, in the first phase, at least one first trenching step is carried out in which, in a predeterminable first time period, material is etched out of the substrate and a depression is produced. In that trenching step, a typical concavity is produced in the wall of the depression. A passivation process is then carried out in that first phase, in which the concavity produced in the walls of the depression by the first trenching step is covered with a passivation material. The first trenching step and the first passivation process may be carried out repeatedly in alternating succession within the first phase, with the result that a typical corrugation is obtained on the walls of the depression so produced. In the second phase of the trench etching process, the cavity is produced through the at least one access hole produced by the depression, by carrying out a second trenching step of a predetermined second time period that is distinctly longer in comparison with the first time period.

    摘要翻译: 微机械传感器元件和用于生产微机械传感器元件的方法,其适用于例如微机械部件中,用于检测物理量。 为传感器元件提供包括基板,进入孔和埋入空腔的设置,通过沟槽蚀刻和/或特别地,各向同性蚀刻工艺在基板中产生至少一个访问孔和空腔 。 沟槽蚀刻工艺包括可分为第一相和第二相的不同的开沟(沟槽蚀刻)步骤。 因此,在第一阶段中,执行至少一个第一开沟步骤,其中在可预定的第一时间段内将材料从衬底中蚀刻出来并产生凹陷。 在挖沟步骤中,在凹陷的壁上产生典型的凹陷。 然后在第一阶段进行钝化处理,其中通过第一开挖步骤在凹陷的壁中产生的凹陷被钝化材料覆盖。 第一开沟步骤和第一钝化工艺可以在第一阶段内连续交替重复进行,结果是在如此制造的凹陷的壁上获得典型的波纹。 在沟槽蚀刻工艺的第二阶段,通过执行与第一时间段相比明显更长的预定第二时间段的第二开沟步骤,通过由凹陷产生的至少一个访问孔产生空腔 。

    Sensor element with trenched cavity
    23.
    发明申请
    Sensor element with trenched cavity 有权
    带沟槽的传感器元件

    公开(公告)号:US20060057816A1

    公开(公告)日:2006-03-16

    申请号:US11223592

    申请日:2005-09-08

    IPC分类号: H01L21/76

    摘要: A micromechanical sensor element and a method for the production of a micromechanical sensor element that is suitable, for example in a micromechanical component, for detecting a physical quantity. Provision is made for the sensor element to include a substrate, an access hole and a buried cavity, at least one of the access holes and the cavity being produced in the substrate by a trench etching and/or, in particular, an isotropic etching process. The trench etching process includes different trenching (trench etching) steps which may be divided into a first phase and a second phase. Thus, in the first phase, at least one first trenching step is carried out in which, in a predeterminable first time period, material is etched out of the substrate and a depression is produced. In that trenching step, a typical concavity is produced in the wall of the depression. A passivation process is then carried out in that first phase, in which the concavity produced in the walls of the depression by the first trenching step is covered with a passivation material. The first trenching step and the first passivation process may be carried out repeatedly in alternating succession within the first phase, with the result that a typical corrugation is obtained on the walls of the depression so produced. In the second phase of the trench etching process, the cavity is produced through the at least one access hole produced by the depression, by carrying out a second trenching step of a predetermined second time period that is distinctly longer in comparison with the first time period.

    摘要翻译: 微机械传感器元件和用于生产微机械传感器元件的方法,其适用于例如微机械部件中,用于检测物理量。 为传感器元件提供包括基板,进入孔和埋入空腔的设置,通过沟槽蚀刻和/或特别地,各向同性蚀刻工艺在基板中产生至少一个访问孔和空腔 。 沟槽蚀刻工艺包括可分为第一相和第二相的不同的开沟(沟槽蚀刻)步骤。 因此,在第一阶段中,执行至少一个第一开沟步骤,其中在可预定的第一时间段内将材料从衬底中蚀刻出来并产生凹陷。 在挖沟步骤中,在凹陷的壁上产生典型的凹陷。 然后在第一阶段进行钝化处理,其中通过第一开挖步骤在凹陷的壁中产生的凹陷被钝化材料覆盖。 第一开沟步骤和第一钝化工艺可以在第一阶段内连续交替重复进行,结果是在如此制造的凹陷的壁上获得典型的波纹。 在沟槽蚀刻工艺的第二阶段,通过执行与第一时间段相比明显更长的预定第二时间段的第二开沟步骤,通过由凹陷产生的至少一个访问孔产生空腔 。

    Method for producing a component, and sensor element
    24.
    发明授权
    Method for producing a component, and sensor element 有权
    用于制造组件和传感器元件的方法

    公开(公告)号:US08530261B2

    公开(公告)日:2013-09-10

    申请号:US12522693

    申请日:2007-11-28

    IPC分类号: H01L21/00

    摘要: A method for producing a component having at least one diaphragm formed in the upper surface of the component, which diaphragm spans a cavity, and having at least one access opening to the cavity from the back side of the component, at least one first diaphragm layer and the cavity being produced in a monolithic semiconductor substrate from the upper surface of the component, and the access opening being produced in a temporally limited etching step from the back side of the substrate. The access opening is placed in a region in which the substrate material comes up to the first diaphragm layer. The etching process for producing the access opening includes at least one anisotropic etching step and at least one isotropic etching step, in the anisotropic etching step, an etching channel from the back side of the substrate being produced, which terminates beneath the first diaphragm layer in the vicinity of the cavity, and at least the end region of this etching channel being expanded in the isotropic etching step until the etching channel is connected to the cavity.

    摘要翻译: 一种用于制造具有形成在所述部件的上表面中的至少一个光阑的部件的方法,所述至少一个光阑形成在所述部件的上表面中,所述光阑跨越空腔,并且具有至少一个从所述部件的后侧到所述腔的进入开口,至少一个第一隔膜层 并且所述空腔从所述部件的上表面在单片半导体衬底中产生,并且所述存取开口在时间上受限制的蚀刻步骤中从所述衬底的背面制造。 进入口放置在基板材料到达第一隔膜层的区域中。 用于制造进出口的蚀刻工艺包括至少一个各向异性蚀刻步骤和至少一个各向同性蚀刻步骤,在各向异性蚀刻步骤中,从所述基板的背面制造蚀刻通道,其终止在第一隔膜层下方 该腔的附近,并且至少该蚀刻通道的端部区域在各向同性蚀刻步骤中扩展,直到蚀刻通道连接到空腔。

    SENSOR AND METHOD FOR PRODUCING THE SAME
    27.
    发明申请
    SENSOR AND METHOD FOR PRODUCING THE SAME 有权
    传感器及其制造方法

    公开(公告)号:US20110002359A1

    公开(公告)日:2011-01-06

    申请号:US12302677

    申请日:2007-04-23

    IPC分类号: G01K7/01 C25D5/00

    摘要: A sensor, in particular for the spatially resolved detection, includes a substrate, at least one micropatterned sensor element having an electric characteristic whose value varies as a function of the temperature, and at least one diaphragm above a cavity, the sensor element being disposed on the underside of the at least one diaphragm, and the sensor element being contacted via connecting lines, which extend within, on top of or underneath the diaphragm. In particular, a plurality of sensor elements may be formed as diode pixels within a monocrystalline layer formed by epitaxy. Suspension springs, which accommodate the individual sensor elements in elastic and insulating fashion, may be formed within the diaphragm.

    摘要翻译: 特别是用于空间分辨检测的传感器包括基板,至少一个微图案化的传感器元件,其具有值随温度变化的电特性,以及在空腔上方的至少一个隔膜,传感器元件设置在 所述至少一个隔膜的下侧,并且所述传感器元件经由连接线接触,所述连接线在隔膜的顶部或下方延伸。 特别地,多个传感器元件可以形成为通过外延形成的单晶层内的二极管像素。 可以在隔膜内形成以弹性和绝缘方式容纳各个传感器元件的悬挂弹簧。

    Sensor and method for its production
    28.
    发明授权
    Sensor and method for its production 有权
    传感器及其生产方法

    公开(公告)号:US08749013B2

    公开(公告)日:2014-06-10

    申请号:US12302677

    申请日:2007-04-23

    IPC分类号: H01L31/058

    摘要: A sensor, in particular for the spatially resolved detection, includes a substrate, at least one micropatterned sensor element having an electric characteristic whose value varies as a function of the temperature, and at least one diaphragm above a cavity, the sensor element being disposed on the underside of the at least one diaphragm, and the sensor element being contacted via connecting lines, which extend within, on top of or underneath the diaphragm. In particular, a plurality of sensor elements may be formed as diode pixels within a monocrystalline layer formed by epitaxy. Suspension springs, which accommodate the individual sensor elements in elastic and insulating fashion, may be formed within the diaphragm.

    摘要翻译: 特别是用于空间分辨检测的传感器包括基板,至少一个微图案化的传感器元件,其具有值随温度变化的电特性,以及在空腔上方的至少一个隔膜,传感器元件设置在 所述至少一个隔膜的下侧,并且所述传感器元件经由连接线接触,所述连接线在隔膜的顶部或下方延伸。 特别地,多个传感器元件可以形成为通过外延形成的单晶层内的二极管像素。 可以在隔膜内形成以弹性和绝缘方式容纳各个传感器元件的悬挂弹簧。

    METHOD FOR PRODUCING A COMPONENT, AND SENSOR ELEMENT
    29.
    发明申请
    METHOD FOR PRODUCING A COMPONENT, AND SENSOR ELEMENT 有权
    生产组件和传感器元件的方法

    公开(公告)号:US20100164027A1

    公开(公告)日:2010-07-01

    申请号:US12522693

    申请日:2007-11-28

    IPC分类号: H01L29/84 H01L21/306

    摘要: A method for producing a component having at least one diaphragm formed in the upper surface of the component, which diaphragm spans a cavity, and having at least one access opening to the cavity from the back side of the component, at least one first diaphragm layer and the cavity being produced in a monolithic semiconductor substrate from the upper surface of the component, and the access opening being produced in a temporally limited etching step from the back side of the substrate. The access opening is placed in a region in which the substrate material comes up to the first diaphragm layer. The etching process for producing the access opening includes at least one anisotropic etching step and at least one isotropic etching step, in the anisotropic etching step, an etching channel from the back side of the substrate being produced, which terminates beneath the first diaphragm layer in the vicinity of the cavity, and at least the end region of this etching channel being expanded in the isotropic etching step until the etching channel is connected to the cavity.

    摘要翻译: 一种用于制造具有形成在所述部件的上表面中的至少一个光阑的部件的方法,所述至少一个光阑形成在所述部件的上表面中,所述光阑跨越空腔,并且具有至少一个从所述部件的后侧到所述腔的进入开口,至少一个第一隔膜层 并且所述空腔从所述部件的上表面在单片半导体衬底中产生,并且所述存取开口在时间上受限制的蚀刻步骤中从所述衬底的背面制造。 进入口放置在基板材料到达第一隔膜层的区域中。 用于制造进出口的蚀刻工艺包括至少一个各向异性蚀刻步骤和至少一个各向同性蚀刻步骤,在各向异性蚀刻步骤中,从所述基板的背面制造蚀刻通道,其终止于第一隔膜层下方 该腔的附近,并且至少该蚀刻通道的端部区域在各向同性蚀刻步骤中扩展,直到蚀刻通道连接到空腔。