Abstract:
A catalyst member for use in processes for the catalytic combustion of gaseous carbonaceous fuels is made from a stabilized carrier having a plurality of gas flow passages extending therethrough defined by channel walls and a catalyst material disposed on the channel walls, wherein the carrier is stabilized against interaction with the catalyst material. The stabilized carrier may be prepared from a monolith comprising silica, magnesia and alumina that has a coating of alumina on the channel walls and by subjecting the coated monolith to stabilizing conditions. The stabilizing conditions may include exposure to high temperature steam.
Abstract:
A catalyst support is prepared from a composite comprising two or more inorganic oxides by forming the composite into a shaped support material having at least 0.8 cc/gm of its pore volume in pore diameters of 0 nm (0 .ANG.) to 120 nm (1,200 .ANG.) and at least 0.1 cc/gm of its pore volume in pore diameters of 120 nm (1,200 .ANG.) to 5,000 nm (50,000 .ANG.) and heating said shaped support material in the presence of steam at sufficient elevated temperature, steam pressure, and time period to increase the average pore diameter of said shaped support in the absence of any appreciable reduction in pore volume. The inorganic oxide composite is selected from the group consisting of a mixture of alumina and silica; a mixture of alumina, silica, and oxides of phosphorus; a mixture of alumina and oxides of phosphorus; a mixture of alumina and boria; a mixture of alumina, boria and oxides of phosphorus; and a mixture of alumina, magnesia, and oxides of phosphorus, the oxides of phosphorus being calculated as P.sub.2 O.sub.5 and the quantities being based upon the weight of the composite.A catalyst is prepared by impregnating the steam-treated support with at least one hydrogenating metal.The catalyst can be used suitably in hydrocarbon conversion processes, such as a process for the hydrodemetallization of a hydrocarbon stream containing asphaltenes and a substantial amount of metals.
Abstract:
There is disclosed a process for hydrotreating a heavy hydrocarbon stream containing metals, asphaltenes, nitrogen compounds, and sulfur compounds to reduce the contents of these contaminants. The process comprises contacting said stream in the presence of hydrogen and under suitable hydrotreating conditions in sequence with a first catalyst in a first reaction zone, a second catalyst in a second reaction zone, and a third catalyst in a third reaction zone. The first catalyst comprises a Group VIB metal and/or a Group VIII metal on a porous inorganic oxide support; the second catalyst consists essentially of at least one hydrogenation metal selected from Group VIB deposed on a support material comprising alumina; and the third catalyst comprises a hydrogenating component comprising molybdenum, chromium, and cobalt on a large-pore, catalytically-active alumina. Each catalyst has specific physical properties.
Abstract:
Disclosed is a method for the catalytic hydroliquefaction of solid carbonaceous material with a catalyst consisting essentially of Cr and Mo on a support or Cr, Mo and either CO or Ni on a support. The average pore diameter should be within 100-200.ANG. .
Abstract:
Hydrotreating catalysts comprise a hydrogenating component and a support comprising at least one porous refractory inorganic oxide, said catalyst having BET surface area of 150 to about 190 m.sup.2 /g, bulk density of at least about 0.2 g/cc, total pore volume of at least about 0.9 cc/g with mercury penetration pore volume of at least about 0.1 cc/g in macropores with radii of 600 to 25,000 .ANG., such surface area, pore size distribution and total pore volume being effective to give an average pore diameter of at leat 230 .ANG. calculated as 4V/A. Hydrotreating process comprises contacting a hydrocarbon feed with hydrogen in the presence of the aforesaid catalyst under hydrotreating conditions. The catalyst and process are particularly useful in hydrotreating feeds comprising high metals or high metals and sulfur content materials.
Abstract:
A catalyst support is prepared from a composite comprising alumina and one or more oxides of phosphorous by forming the composite into a shaped support material having at least 0.8 cc/gm of its pore volume in pores having diameters of 0 nm (0 A) to 120 nm (1,200 A) and at least 0.1 cc/gm of its pore volume in pores having diameters of 120 nm (1,200 A) to 5,000 nm (50,000 A) and heating said shaped support material in the presence of steam at sufficient elevated temperature, steam pressure, and time period to increase the average pore diameter of said shaped support in the absence of any appreciable reduction in pore volume.A catalyst is prepared by impregnating the steam-treated support with at least one hydrogenating metal.The catalyst can be used suitably in hydrocarbon conversion processes, such as a process for the hydrodemetallization of a hydrocarbon stream containing asphaltenes and a substantial amount of metals.
Abstract:
A process for hydrotreating a hydrocarbon stream to remove nitrogen and sulfur which process comprises contacting a hydrocarbon stream comprising a stream selected from petroleum distillate, tar sands distillate, and shale oil, with hydrogen and a catalyst comprising a porous refractory inorganic oxide and deposited thereon hydrogenation components comprising chromium, molybdenum and at least one Group VIII metal, said catalyst having a pore volume distribution comprising 20-50% of pore volume in pores with diameters of 0-50 Angstrom units, 30-70% of pore volume in pores with diameters of 50-100 Angstrom units, 0-20% of pore volume in pores with diameters of 100-150 Angstrom units, and 0-10% of pore volume in pores with diameters greater than 150 Angstrom units.
Abstract:
Disclosed is a two-stage catalytic process for hydrodemetallation and hydrodesulfurization of heavy hydrocarbon streams containing asphaltenes and a substantial amount of metals. The first stage of this process comprises contacting the feedstock in a first reaction zone with hydrogen and a demetallation catalyst comprising hydrogenation metal selected from Group VIB and/or Group VIII deposed on a large-pore, high surface area inorganic oxide support; the second stage of the process comprises contacting the effluent from the first reaction zone with a catalyst consisting essentially of hydrogenation metal selected from Group VIB deposed on a smaller pore, catalytically active support comprising alumina, said second stage catalyst having a surface area within the range of about 150 m.sup.2 /gm to about 300 m.sup.2 /gm, having a majority of its pore volume in pore diameters within the range of about 80 A to about 130 A, and the catalyst has a pore volume within the range of about 0.4 cc/gm to about 0.9 cc/gm.
Abstract:
The process comprises contacting a heavy hydrocarbon stream containing metals and asphaltenes to reduce the contents of nitrogen compounds, sulfur compounds, metals and asphaltenes in the hydrocarbon stream under suitable conditions and in the presence of hydrogen with a catalyst comprising a hydrogenating component consisting essentially of molybdenum and chromium, their oxides, their sulfides, or mixtures thereof on a large-pore, catalytically active alumina. The catalyst has a pore volume within the range of about 0.4 cc/gm to about 0.8 cc/gm, a surface area within the range of about 150 m.sup.2 /gm to about 300 m.sup.2 /gm, and an average pore diameter within the range of about 100 A to about 200 A.