摘要:
The present disclosure is directed to a thermoforming process and thermoformed articles produced therefrom. The thermoforming process includes heating a structure with a gloss layer composed of a propylene-based polymer having a melt flow rate from about 0.1 g/10 min to about 1.5 g/10 min, and producing a thermoformed article wherein the gloss layer has a post-thermoformed Gardner gloss value within 25% of the pre-thermoformed Gardner gloss value for the gloss layer. The thermoformed article may have a gloss layer with a post-thermoformed Gardner gloss value greater than or equal to about 60.
摘要:
The invention provides an article comprising a first layer and a second layer, and wherein the first layer is formed from a first composition comprising an ethylene/α-olefin/diene interpolymer, an isoprene rubber (synthetic), a natural rubber, a butadiene rubber, a styrene butadiene rubber, a chloroprene rubber, a nitrile rubber, a hydrogenated nitrile rubber, a chlorinated polyethylene, a chlorosulfonated polyethylene, an ethylene/propylene rubber, an ethylene/diene copolymer, a fluoro rubber, a polyurethane, a silicone rubber, or a combination thereof; and wherein the second layer is formed from a second composition comprising a butyl rubber, a halobutyl rubber, polyvinylidene chloride, a brominated polymer derived from a copolymer of isobutylene and p-methyl styrene, a nitrile rubber, a chloroprene rubber, a chlorosulfonated polyethylene, a chlorinated polyethylene, a polyurethane, a fluoro rubber, or a combination thereof.
摘要:
Scorch is inhibited during the free-radical crosslinking of a crosslinkable polymer, e.g., an EPDM, by incorporating into the polymer before melt processing and crosslinking a scorch inhibiting amount of a derivative, preferably an ether, ester or urethane derivative, of a TEMPO compound, e.g., 4-hydroxy-tetrahydrocarbylpiperidin-1-oxyl. The scorch inhibitors of this invention perform as well, if not better, than their 4-hydroxy-tetrahydrocarbylpiperidin-1-oxyl counterparts in similar polymer compositions and under similar conditions in terms of scorch inhibition and ultimate degree of crosslinking, but exhibit less volatility and less migration within the polymer composition.
摘要:
Scorch is inhibited during the free-radical crosslinking of a crosslinkable polymer, e.g., an EPDM, by incorporating into the polymer before melt processing and crosslinking a scorch inhibiting amount of a derivative, preferably an ether, ester or urethane derivative, of a TEMPO compound, e.g., 4-hydroxy-tetrahydrocarbylpiperidin-1-oxyl. The scorch inhibitors of this invention perform as well, if not better, than their 4-hydroxy-tetrahydrocarbylpiperidin-1-oxyl counterparts in similar polymer compositions and under similar conditions in terms of scorch inhibition and ultimate degree of crosslinking, but exhibit less volatility and less migration within the polymer composition.
摘要:
The present invention is an improved free-radical crosslinking process and free-radical crosslinking polymer compositions. The improved process delivers hotter processing conditions, faster crosslinking, or increased crosslinked densities. The crosslinkable polymeric composition comprises (1) a free-radical crosslinkable polymer, (2) a free-radical inducing species, and (3) a crosslinking-temperature-profile modifier.
摘要:
A masterbatch composition comprising: (a) a copolymer of ethylene and 1-octene prepared with a metallocene catalyst; (b) as a scorch inhibitor, a substituted hydroquinone; 4,4′-thiobis(2-methyl-6-t-butylphenol); 4,4′-thiobis(2-t-butyl-5-methylphenol); or mixtures thereof; (c) as a cure booster, triallyl trimellitate; 3,9-divinyl-2,4,8,10-tetra-oxaspiro[5.5]undecane; triallylcyanurate; triallyl isocyanurate; or mixtures thereof; and (d) an organic peroxide.
摘要:
A cable having one or more electrical conductors or a core of electrical conductors, each electrical conductor or core being surrounded by an insulating composition, essentially free from water tree growth inhibitors, having (i) a polyethylene having a density in the range of 0.860 to 0.940 gram per cubic centimeter; and, based on 100 parts by weight of component (i), (ii) about 0.2 to about 1 part by weight of a homopolymer of propylene with the proviso that the insulating composition is extruded at a temperature below the melting point of the homopolymer of propylene.