Abstract:
A motor-driven compressor includes a compression unit, an electric motor, a housing, a cover, wherein the cover includes a main body and a connector coupler, and the cover and the housing define an accommodating chamber, a motor driving circuit that is accommodated in the accommodating chamber and includes a circuit board, and a metal terminal held in the connector coupler, wherein the metal terminal includes first and second end portions. The cover has a shield including a first shield portion, which blocks electromagnetic noise and forms at least part of the connector coupler, and a second shield portion, which blocks electromagnetic noise and forms at least part of the main body. The first and second shield portions are coupled to each other. The second shield portion includes an insertion hole into which one of the first and second end portions of the metal terminal is insertable.
Abstract:
An electric compressor includes a motor housing, an inverter, a cover, and a fastener. The inverter includes a board; an electronic component; a holder composed of an insulating material, the holder containing the electronic component and supporting the board; a bus bar integrated with the holder, and electrically connected to a circuit pattern and the motor housing; and a tubular member interposed between the cover and the bus bar, with the fastener inserted in the tubular member. The fastening force from the fastener causes the tubular member to press the bus bar toward the motor housing.
Abstract:
A motor-driven compressor that includes a compression unit adapted to compress refrigerant, an electric motor adapted to drive the compression unit, and a housing that accommodates the compression unit and the electric motor. The housing includes a coupling member. A motor driving circuit is adapted to drive the electric motor. The motor driving circuit includes a circuit board and a capacitor, which is electrically connected to the circuit board. The capacitor includes a side surface and an end surface that faces the coupling member. A resin material is located between the coupling member and the capacitor. The coupling member includes a facing surface that faces the capacitor. The facing surface includes a recess extending away from the capacitor. The recess receives some of the resin material.
Abstract:
A motor-driven compressor includes an electric motor, a drive circuit, a modulation method controller, a temperature measuring section, a high-temperature (HT) stop controller, and a high-temperature (HT) stop temperature setting section. The high-temperature (HT) stop controller stops the electric motor when the temperature measured by the temperature measuring section is higher than or equal to a predetermined high-temperature (HT) stop temperature. When the modulation method is the three-phase modulation, the HT stop temperature setting section sets the HT stop temperature to a three-phase high-temperature (HT) stop temperature. When the modulation method is the two-phase modulation, the HT stop temperature setting section sets the HT stop temperature to a two-phase high-temperature (HT) stop temperature, which is higher than the three-phase HT stop temperature.
Abstract:
A motor-driven compressor includes a metal housing accommodating a compression unit and an electric motor and a resin cover coupled to the housing. The cover and the housing define an accommodation chamber that accommodates a motor driving circuit that drives the electric motor. A metal shield is fixed to the cover and blocks electromagnetic noise. The shield and the cover are stacked together. A sealing member located between the shield and the cover. The sealing member is configured to block entry of foreign matter into the accommodation chamber through a gap between the shield and the cover.
Abstract:
A motor-driven compressor includes an electric motor driven by a motor driver, which includes a switching element that converts DC voltage from a battery to AC voltage. A control unit controls the switching operation of the switching element. A temperature detector detects the temperature of the switching element. A voltage detector detects DC voltage applied to the switching element from the battery. The control unit suspends the switching operation of the switching element when the temperature detected by the temperature detector rises to a predetermined temperature threshold. The control unit also reduces counter electromotive force generated by the electric motor. The temperature threshold includes a first temperature threshold, corresponding to a withstand temperature of the switching element, and a second temperature threshold, which is higher than the first temperature threshold. The control unit switches the temperature threshold between the first and second temperature thresholds.
Abstract:
A motor-driven compressor that includes a compression unit, an electric motor, a housing, a cover, and a motor driving circuit. A metal terminal electrically connects the electric motor to the motor driving circuit. A coupling base is coupled to the housing, and the motor driving circuit is coupled to the coupling base. Each of the coupling base and the housing includes an insertion portion through which the metal terminal is inserted. At least one of the coupling base and the housing includes a protrusion. The protrusion is separated from the insertion portions. At least the other of the coupling base and the housing includes a receiving portion that receives the protrusion. The coupling base is positioned relative to the housing by connection of the insertion portion of the coupling base and the insertion portion of the housing and by engagement of the protrusion and receiving portion.
Abstract:
An on-vehicle electric compressor for a vehicle includes a compression mechanism compressing a refrigerant, an electric motor driving the compression mechanism and a housing accommodating therein the compression mechanism and the electric motor. The on-vehicle electric compressor further includes a cover fixed to the housing, a motor driving circuit disposed between the housing and the cover and driving the electric motor, and a protecting member protecting the cover against an external force caused when the vehicle has a collision. The protecting member has a contact portion that is contactable with a receiving portion when the external force is applied to the protecting member, the receiving portion having a greater rigidity than the cover to receive the external force through the contact portion.