Abstract:
The invention relates to a system (31) for generating spectral computed tomography projection data. A spectral projection data generation device (6) comprising an energy-resolving detector generates spectral computed tomography projection databased on polychromatic radiation (4), which has been provided by a radiation device (2), after having traversed an examination zone (5), and a reference values generation device generates energy-dependent reference values based on radiation, which has not traversed the examination zone. A spectral parameter providing unit (12) provides a spectral parameter being indicative of a spectral property of the radiation device based on the energy-dependent reference values. In particular, spectral properties of the radiation device can be monitored over time, wherein this information can be used for, for instance, correcting the spectral computed tomography projection data, and/or, if undesired spectral properties of the radiation device are indicated, triggering a replacement of the radiation device.
Abstract:
The present invention relates handling misalignment in an X-ray imaging system for differential phase contrast imaging. In order to provide a reduction for the pretuning and adjustment requirements for manufacture and maintenance in a differential phase contrast imaging system, an X-ray imaging system (10) for differential phase contrast imaging, is provided that comprises a differential phase contrast setup (12) with an X-ray source (14) and an X-ray detector (16), a grating arrangement (18) comprising a source grating (20), a phase grating (22) and an analyser grating (24), wherein the source grating is arranged between the X-ray source and the phase grating, and the analyser grating is arranged between the phase grating and the detector. Further, a moving arrangement for a relative movement between an object under examination and at least one of the gratings is provided, as well as a processing unit (32), and a translation arrangement (34) for translating the source grating. The phase grating, the analyser grating and the detector are provided as a rigid interferometer unit (36), in which the phase grating and the analyser grating are mounted in parallel to each other. The source grating is misaligned in respect to the interferometer unit such that moiré fringes are detectable in the plane of the detector. The processing unit is configured to detect moiré patterns in signals provided by the detector upon X-ray radiation. The processing unit is further configured to compute a translation signal (38) for translating the source grating for achieving a predetermined moiré pattern. The translation arrangement is configured to adjust the positioning of the source grating at least in the X-ray projection direction (30), based on the value of the translation signal.
Abstract:
The present invention relates to an anti-scatter grid (ASG) assembly comprising a first and a second grid, wherein the second grid is arranged on top of the first grid and comprises a lateral shift. The lamella thickness of the first grid is smaller than the lamella thickness of the second grid. The present invention further relates to a detector arrangement comprising a pixel detector and an ASG assembly arranged on top of the pixel detector.
Abstract:
An anti-scatter grid (ASG) for X-ray imaging with a surface (S) formed from a plurality of strips (LAM). The plurality of strips including at least two guard strips (Li,Li+1) that are thicker in a direction parallel to said surface than one or more strips (li) of said plurality of strips (LAM). The one or more strips (li) being situated in between said two guard strips (Li,Li+1).
Abstract:
An X-ray detector (10) for a phase contrast imaging system (100) and a phase contrast imaging system (100) with such detector (10) are provided. The X-ray detector (10) comprises a scintillation device (12) and a photodetector (14) with a plurality of photosensitive pixels (15) optically coupled to the scintillation device (12), wherein the X-ray detector (10) comprises a primary axis (16) parallel to a surface normal vector of the scintillation device (12), and wherein the scintillation device (12) comprises a wafer substrate (18) having a plurality of grooves (20), which are spaced apart from each other. Each of the grooves (20) extends to a depth (22) along a first direction (21) from a first side (13) of the scintillation device (12) into the wafer substrate (18), wherein each of the grooves (20) is at least partially filled with a scintillation material. Therein, the first direction (21) of at least a part of the plurality of grooves (20) is different from the primary axis (16), such that at least a part of the plurality grooves (20) is tilted with respect to the primary axis (16). An angle between the first direction (21) of a groove (20) arranged in a center region (24) of the scintillation device (12) and the primary axis (16) is smaller than an angle between the first direction (21) of a groove (20) arranged in an outer region (26) of the scintillation device (12) and the primary axis (16).
Abstract:
The present invention relates to a photon scanning apparatus comprising a photon source (2) to emit a photon beam (4), a photon detector (6) to detect photons emitted from the photon source (2). The photon source (2) is adapted to emit the photon beam (4) in accordance with a predetermined pulse width modulation scheme at a predetermined flux rate, wherein the pulse width modulation scheme defines pulse widths of the photon beam (4) for respective positions of the photon source (2) and the photon detector around a central axis (R) and an object to be scanned. The photon detector (6) is adapted to start detecting photons with a delay relative to the photon source starting to emit photons and to finish detecting photons prior to the photon source stopping to emit photons. The photon scanning apparatus thus only has to be calibrated for the predetermined flux rate.
Abstract:
Present invention relates to devices and methods for determining a calcium content by analyzing cardiac spectral CT data. CT projection data (9), obtainable by scanning a cardiac region of a subject using a spectral CT scanning unit, is modelled (12) by applying a material decomposition algorithm to the projection data to provide a calcium-specific component. Tomographic reconstructions (13) of the projection data, to provide a first 3D image (8), and of the calcium-specific component, to provide a second 3D image (6), are performed. The first 3D image (8) is segmented (14) to provide an image mask (5) corresponding to a cardiovascular structure of interest, a part of the second 3D image (6) is selected (15) based on the image mask (5), and a calcium content is calculated (16) in the cardiovascular structure of interest based on the selected part of the second 3D image (6).
Abstract:
A phantom body (PB) for use in a differential phase contrast imaging apparatus (IM) for calibration of same. The phantom body (PB) allows for simultaneous calibration of three different image signal channels, namely refraction, phase shift and small angle scattering.
Abstract:
A phase contrast imaging apparatus (MA) and related image processing method. The imaging apparatus includes a movable arm (AR) that carries a detector (D) and one or more interferometric gratings (G0,G1,G2). The imaging apparatus includes a rigidizer (RGD) to control the rigidity of at least the arm (AR) or a mounting (GM) for the gratings (G0,G1,G2). This allows controlling a drift of a Moiré pattern as detected in a sequence of readouts. A phase of the so controlled Moiré pattern can be used to calibrate the imaging apparatus by using the image processing method.
Abstract:
The invention relates to a method and a pulse processing circuit (100) for the processing of current pulses (CP) generated by incident photons (X) in a piece of converter material, for instance in a pixel (11) of a radiation detector. Deviations of the pulse shape from a reference are detected and used to identify pulse corruption due to pile-up effects at high count rates and/or charge sharing between neighboring pixels. The deviation detection may for instance be achieved by generating, with a pulse shaper (110), bipolar shaped pulses from the current pulse (CP) and/or two shaped pulses of different shapes which can be compared to each other.