Abstract:
The invention relates to a support apparatus (1) for supporting a user in a diagnosis process, especially for assisting a physician in staging prostate cancer. A segmentation unit (3) determines three-dimensional segments of an anatomical object like a prostate based on a three-dimensional image being preferentially a magnetic resonance image, wherein the segments comprise anatomical segment boundaries and non-anatomical segment boundaries. A visualization generating unit (4) generates a visualization of the segments in the image, a graphical user interface providing unit (5) provides a graphical user interface allowing the user to assign scores to the determined three-dimensional segments, and a display (9) displays the visualization and the graphical user interface. Thus, an automatic delineation of segments may be provided to which a user like a physician can assign scores, wherein based on the scores assigned to the segments a diagnosis can be performed, in particular, prostate cancer can be staged.
Abstract:
A system for planning radiation treatment therapy is provided. An optical sensor device is implanted within or in close proximity to a risk region within the patient during a radiation delivery. The sensor device optically monitors the orientation of the risk region, and the radiation dosage received by the risk region, during the radiation delivery. That information may be used as appropriate to modify an on-going radiation delivery plan in real time while the plan is being implemented.
Abstract:
The invention provides a method and system for assessing a treatment recommendation (TR) for a patient. It involves analysis of the treatments provided to previous patients (pr) with the same general medical condition by a plurality of different treatment specialists. A measure of conformity (C) of the treatment recommendation to the medical condition (MC) of the patient is provided, based on the range of treatments received by previous patients having that medical condition, for example based on a relative value between the number of previous patients (npr) that received the recommended treatment and the number that received all possible treatments.
Abstract:
A device for segmenting an image of a subject (36), includes a data interface for receiving an image of the subject (36), which image depicts a structure of said subject (36). A translation unit translates a user-initiated motion of an image positioner into a first contour (38) surrounding said structure. A motion parameter registering unit registers a motion parameter of said user-initiated motion to said first contour (38). The motion parameter includes a speed and/or an acceleration of an image positioner. An image control point unit distributes a plurality of image control points (40) on the first contour with a density decreasing with the motion parameter. A segmentation unit segments the image by determining a second contour (44) within the first contour based on the plurality of image control points (40). The segmentation unit is configured to use one or more segmentation functions.
Abstract:
The invention relates to a support apparatus (1) for supporting a user in a diagnosis process, especially for assisting a physician in staging prostate cancer. A segmentation unit (3) determines three-dimensional segments of an anatomical object like a prostate based on a three-dimensional image being preferentially a magnetic resonance image, wherein the segments comprise anatomical segment boundaries and non-anatomical segment boundaries. A visualization generating unit (4) generates a visualization of the segments in the image, a graphical user interface providing unit (5) provides a graphical user interface allowing the user to assign scores to the determined three-dimensional segments, and a display (9) displays the visualization and the graphical user interface. Thus, an automatic delineation of segments may be provided to which a user like a physician can assign scores, wherein based on the scores assigned to the segments a diagnosis can be performed, in particular, prostate cancer can be staged.
Abstract:
The invention relates to a labeling apparatus (1) for labeling structures of an object shown in an object image. A probability map providing unit (3) provides a probability map, the probability map indicating for different labels, which are indicative of different structures of the object, and for different positions in the probability map the probability that the respective structure, which is indicated by the respective label, is present at the respective position, wherein the probability depends on the position in the probability map. The probability map is mapped to the object image by a mapping unit (4), wherein a label assigning unit (5) assigns to a provided contour, which represents a structure in the object image, a label based on the mapped probability map. This allows automatically labeling structures of the object, which are indicated by provided contours in the object image, with relatively low computational efforts.
Abstract:
A tracking system for a target anatomy of a patient can include a medical device having a body (281) having a distal end (290) and at least one channel (292) formed therein, where the body is adapted for insertion through an anatomy (105) to reach a target area (430); an accelerometer (185) connected to the body and positioned in proximity to the distal end; an imaging device (295) operably coupled with the body; and a light source (297) operably coupled with the body, where the accelerometer is in communication with a remote processor (120) for transmitting acceleration data thereto, where the imaging device is in communication with the remote processor for transmitting real-time images thereto, and where an orientation of the medical device and calibration of direction with respect to the anatomy is determined by the processor based on the acceleration data.