摘要:
An electro-optic modulator arrangement for achieving switching speeds greater than 1 Gb/s utilizes pre-emphasis pulses to accelerate the change in refractive index of the optical waveguide used to form the electro-optic modulator. In one embodiment, a feedback loop may be added to use a portion of the modulated optical output signal to adjust the magnitude and duration of the pre-emphasis pulses, as well as the various reference levels used for modulated. For free carrier-based electro-optic modulators, including silicon-based electro-optic modulators, the pre-emphasis pulses are used to accelerate the movement of free carriers at the transitions between input signal data values.
摘要:
An electro-optic modulator arrangement for achieving switching speeds greater than 1 Gb/s utilizes pre-emphasis pulses to accelerate the change in refractive index of the optical waveguide used to form the electro-optic modulator. In one embodiment, a feedback loop may be added to use a portion of the modulated optical output signal to adjust the magnitude and duration of the pre-emphasis pulses, as well as the various reference levels used for modulated. For free carrier-based electro-optic modulators, including silicon-based electro-optic modulators, the pre-emphasis pulses are used to accelerate the movement of free carriers at the transitions between input signal data values.
摘要:
An arrangement for actively controlling, in two dimensions, the manipulation of light within an SOI-based optical structure utilizes doped regions formed within the SOI layer and a polysilicon layer of a silicon-insulator-silicon capacitive (SISCAP) structure. The regions are oppositely doped so as to form an active device, where the application of a voltage potential between the oppositely doped regions functions to modify the refractive index in the affected area and alter the properties of an optical signal propagating through the region. The doped regions may be advantageously formed to exhibit any desired “shaped” (such as, for example, lenses, prisms, Bragg gratings, etc.), so as to manipulate the propagating beam as a function of the known properties of these devices. One or more active devices of the present invention may be included within a SISCAP formed, SOI-based optical element (such as, for example, a Mach-Zehnder interferometer, ring resonator, optical switch, etc.) so as to form an active, tunable element.
摘要:
A trapezoidal shaped single-crystal silicon prism is formed and permanently attached to an SOI wafer, or any structure including a silicon optical waveguide. In order to provide efficient optical coupling, the dopant species and concentration within the silicon waveguide is chosen such that the refractive index of the silicon waveguide is slightly less than that of the prism coupler (refractive index of silicon≈3.5). An intermediate evanescent coupling layer, disposed between the waveguide and the prism coupler, comprises a refractive index less than both the prism and the waveguide. In one embodiment, the evanescent coupling layer comprises a constant thickness. In an alternative embodiment, the evanescent coupling layer may be tapered to improve coupling efficiency between the prism and the waveguide. Methods of making the coupling arrangement are also disclosed.
摘要:
An arrangement for coupling between a free-space propagating optical signal and an ultrathin silicon waveguide formed in an upper silicon layer (SOI layer) of a silicon-an-insulator (SOI) structure includes a silicon nanotaper structure formed in the (SOI layer) and coupled to the ultrathin silicon waveguide. A dielectric waveguide coupling layer is disposed so as to overly a portion of a dielectric insulating layer in a region where an associated portion of the SOI layer has been removed. An end portion of the dielectric waveguide coupling layer is disposed to overlap an end section of the silicon nanotaper to form a mode conversion region between the free-space signal and the ultrathin silicon waveguide. A free-space optical coupling arrangement is disposed over the dielectric waveguide coupling layer and used to couple between free space and the dielectric waveguide coupling layer and thereafter into the ultrathin silicon waveguide.
摘要:
A system and method for providing the layout of non-Manhattan shaped integrated circuit elements using a Manhattan layout system utilizes a plurality of minimal sized polygons (e.g., rectangles) to fit within the boundaries of the non-Manhattan element. The rectangles are fit such that at least one vertex of each rectangle coincides with a grid point on the Manhattan layout system. Preferably, the rectangles are defined by using the spacing being adjacent grid points as the height of each rectangle. As the distance between adjacent grid points decreases, the layout better matches the actual shape of the non-Manhattan element. The system and method then allows for electrical and optical circuit elements to be laid out simultaneously, using the same layout software and equipment.
摘要:
A low loss coupling arrangement between a slab/strip waveguide and a rib waveguide in an optical waveguiding structure formed on a silicon-on-insulator (SOI) platform utilizes tapered sections at the input and/or output of the rib waveguide to reduce loss. Optical reflections are reduced by using silicon tapers (either vertical tapers, horizontal tapers, or two-dimensional tapers) that gradually transition the effective index seen by an optical signal propagating along the slab/strip waveguide and subsequently into and out of the rib waveguide. Loss can be further reduced by using adiabatically contoured silicon regions at the input and output of the rib waveguide to reduce mode mismatch between the slab/strip waveguide and rib waveguide. In a preferred embodiment, concatenated tapered and adiabatic sections can be used to provide for reduced optical reflection loss and reduced optical mode mismatch.
摘要:
A conventional CMOS fabrication technique is used to integrate the formation of passive optical devices and active electro-optic devices with standard CMOS electrical devices on a common SOI structure. The electrical devices and optical devices share the same surface SOI layer (a relatively thin, single crystal silicon layer), with various required semiconductor layers then formed over the SOI layer. In some instances, a set of process steps may be used to simultaneously form regions in both electrical and optical devices. Advantageously, the same metallization process is used to provide electrical connections to the electrical devices and the active electro-optic devices.
摘要:
An arrangement for providing optical coupling between a free-space propagating optical signal and an ultrathin silicon waveguide formed in an upper silicon layer of a silicon-on-insulator (SOI) structure includes a silicon nanotaper structure formed in the upper silicon layer (SOI layer) of the SOI structure and coupled to the ultrathin silicon waveguide. A dielectric waveguide coupling layer, with a refractive index greater than the index of the dielectric insulating layer but less than the refractive index of silicon, is disposed so as to overly a portion of the dielectric insulating layer in a region where an associated portion of the SOI layer has been removed. An end portion of the dielectric waveguide coupling layer is disposed to overlap an end section of the silicon nanotaper to form a mode conversion region between the free-space propagating optical signal and the ultrathin silicon waveguide. A free-space optical coupling arrangement (such as a prism or grating) is disposed over the dielectric waveguide coupling layer and used to couple a propagating optical signal between free space and the dielectric waveguide coupling layer and thereafter into the ultrathin silicon waveguide.
摘要:
An SOI-based photonic bandgap (PBG) electro-optic device utilizes a patterned PBG structure to define a two-dimensional waveguide within an active waveguiding region of the SOI electro-optic device. The inclusion of the PBG columnar arrays within the SOI structure results in providing extremely tight lateral confinement of the optical mode within the waveguiding structure, thus significantly reducing the optical loss. By virtue of including the PBG structure, the associated electrical contacts may be placed in closer proximity to the active region without affecting the optical performance, thus increasing the switching speed of the electro-optic device. The overall device size, capacitance and resistance are also reduced as a consequence of using PBGs for lateral mode confinement.