摘要:
To provide a method which can define the direction and orientation of magnetization of a pinned layer while reducing the number of steps of forming a GMR film. The magnetization direction of the pinned layer is defined in a plurality of directions by forming a plurality of patterns having directivities. Further, when the magneto-resistive effect film is formed, a magnetic field is applied in a direction at an angle set between the angles of the plurality of patterns.
摘要:
To provide a magnetic encoder having high resolution and a high output, and a magnetoresistive sensor for an encoder. A fine sensor having a reduced demagnetization field is produced by: forming a free layer consists of a laminated soft magnetic film in which two soft magnetic layers are coupled in anti-parallel, and setting the width of a sensor unit to 2 μm to 4 μm.
摘要:
No related magnetoresistive multi-layered films made from a metal magnetic film provide sufficient reproducing output power. A high-polarized layer with a thickness of 10 nm or less is formed as a Fe-rich Fe—O layer in contact with the interface of a non-magnetic intermediate layer and the resulting layers are heat treated to form a multi-layered film of ferromagnetic Fe—O layers, achieving a magnetoresistive element having high magnetoresistance.
摘要:
No related magnetoresistive multi-layered films made from a metal magnetic film provide sufficient reproducing output power. A high-polarized layer with a thickness of 10 nm or less is formed as a Fe-rich Fe—O layer in contact with the interface of a non-magnetic intermediate layer and the resulting layers are heat treated to form a multi-layered film of ferromagnetic Fe—O layers, achieving a magnetoresistive element having high magnetoresistance.
摘要:
An oxide layer and an antiparallel coupling layer are inserted into a ferromagnetic pinned layer to be subjected to heat treatment with appropriate ferromagnetic film thickness and magnetization field to form a spin-valve film, which is controlled in amount of magnetization and is high in magnetoresistance.
摘要:
A magnetic recording read head is provided capable of achieving high reproduction output, resolution, and SNR, even at a high linear density. There is also provided a magnetic recording and reproducing device capable of achieving sufficient error bit rate. The magnetic recording read head includes a differential read head and a write head. The differential read head has a multilayer structure formed by laminating a first magnetoresistive sensor having a first free layer, a differential gap layer, and a second magnetoresistive sensor having a second free layer. Outside the multilayer structure, a pair of electrodes and a pair of magnetic shields are provided respectively. A ratio (Gl/bl) of an inside distance (Gl) between the first and second free layers to a bit length (bl) is set to 0.6 or more and 1.6 or less.
摘要:
A magnetic recording read head is provided capable of achieving high reproduction output, resolution, and SNR, even at a high linear density. There is also provided a magnetic recording and reproducing device capable of achieving sufficient error bit rate. The magnetic recording read head includes a differential read head and a write head. The differential read head has a multilayer structure formed by laminating a first magnetoresistive sensor having a first free layer, a differential gap layer, and a second magnetoresistive sensor having a second free layer. Outside the multilayer structure, a pair of electrodes and a pair of magnetic shields are provided respectively. A ratio (Gl/bl) of an inside distance (Gl) between the first and second free layers to a bit length (bl) is set to 0.6 or more and 1.6 or less.
摘要:
A magnetoresistive head and a fabricating method thereof accomplishing high sensitivity and low noise are provided even if track width narrowing makes progress. In one embodiment, a pinned layer includes a laminate which includes at least two magnetic layers and where adjacent magnetic layers are coupled antiferromagnetically to each other, and a mechanism to apply a longitudinal biasing field to a free layer is made to function by laminating a nonmagnetic separate layer/longitudinal biasing layer/antiferromagnetic layer connecting the free layer and opposite a nonmagnetic conductive layer (or nonmagnetic tunneling barrier layer). Controlling a magnetization direction of the longitudinal biasing layer which bears application of a longitudinal biasing field to the pinned layer and free layer is achieved by annealing carried out while applying a magnetic field in a track width direction and applying a magnetic field at room temperature.
摘要:
According to one embodiment, a magnetoresistive head has a magnetoresistive sensor film between a lower shield layer and an upper shield layer. The magnetoresistive sensor film is formed by stacking at least a pinning layer, a first ferromagnetic layer, an intermediate layer, and a second ferromagnetic layer, in which a sense current flows so as to pass through an interface between the intermediate layer and the second ferromagnetic layer, and a resistance change of the magnetoresistive sensor film in accordance with the change of an external magnetic field is detected. Also, a lateral side metal layer having an electric resistivity lower than the electric resistivity of the pinning layer is disposed at least on a side wall of the pinning layer among side walls of layers constituting the magnetoresistive sensor film, the lateral side metal layer being in contact with the lower shield layer. Other embodiments are described as well.
摘要:
In a side shield structure employed to narrow the effective track, a noise caused by the side shield structure can be reduced. In one embodiment, the side shield is inclined with respect to the film plane to suppress the generation of a magnetic pole in the end portion of the side shield. To this end, the side face of a device is inclined at a desired angle. Further, a reproduction device is formed at two or more angles β1 and β2 to improve the track width accuracy.