摘要:
A wavelength division multiplexing module capable of multiplexing or demultiplexing a plurality of optical signals having close wavelengths with less crosstalk. The wavelength division multiplexing module includes a housing having a bottom wall, a first side wall, and a second side wall inclined a predetermined angle with respect to the first side wall, and a common port assembly fixed to the bottom wall of the housing so as to emit a collimated beam substantially perpendicular to the first side wall. One or more filter port assemblies are fixed to the first side wall in the condition that the pass wavelength characteristic and optical axis of each assembly have been adjusted. Similarly, one or more filter port assemblies are fixed to the second side wall in the condition that the pass wavelength characteristic and optical axis of each assembly have been adjusted. Each filter port assembly includes an optical film holder rotatable in a hole having a center axis inclined a predetermined angle .theta.1 with respect to the optical axis, and a band-pass filter mounted in the optical film holder so as to be inclined a predetermined angle .theta.2 with respect to a plane normal to the center axis of the hole of the optical film holder.
摘要:
An apparatus, such as an optical modulator, which includes an optical waveguide and a polarizer housing device. The optical waveguide has an input end to receive light, and the polarizer housing device is connected to the input end of the optical waveguide. The polarizer housing device includes a polarizer which polarizes light, and a lens. A propagation space is in the polarizer housing device between the polarizer and the lens. The light polarized by the polarizer travels through the propagation space to the lens and is guided by the lens to the input end of the optical waveguide. The polarizer is bonded to the polarizer housing device with an adhesive so that no excess adhesive flows into the propagation space. Therefore, it is not necessary to use an optical adhesive to bond the polarizer to the polarizer housing device.
摘要:
A beam splitter formed by laminating a plurality of optical films on a glass substrate having a refractive index of 1.51.+-.0.10. The optical films are first, second, third, fourth, and fifth layers laminated in this order from the glass substrate. The first layer has a refractive index of 1.44.+-.0.10 and an optical film thickness of 0.05-0.15; the second layer has a refractive index of 1.68.+-.0.10 and an optical film thickness of 0.01-0.10; the third layer has a refractive index of 1.44.+-.0.10 and an optical film thickness of 0.50-0.60; the fourth layer has a refractive index of 2.23.+-.0.10 and an optical film thickness of 0.25-0.35; and the fifth layer has a refractive index of 1.44.+-.0.10 and an optical film thickness of 0.25-0.35. The optical film thickness means a relative value represented by n.times.d/.lambda. where n denotes a refractive index; d denotes an actual film thickness, and .lambda. denotes a wavelength deciding the center of a wavelength band. The beam splitter can reduce the polarization dependency of a branching ratio with a beam incident angle of 22.5.degree..
摘要:
An optical device including a lens located between a first port and a second port, and a photodetector having a photodetecting surface located in the vicinity of the second port. The first port and the second port have a first aperture and a second aperture, respectively. The lens has a converging portion for converting a light beam so as to couple the first aperture and the second aperture, and a deflecting portion for deflecting a part of a light beam from the first port to make the part incident on the photodetecting surface. The converging portion and the deflecting portion are integral with each other, for example. By using this optical device, light power can be monitored stably with no polarization dependence.
摘要:
An optical device which optically connects a first and a second optical fiber with an optical path provided therebetween and has two or more functions including the function of an optical isolator. A beam of parallel rays obtained by having a beam from an excitation end of a first optical fiber collimated by a lens is passed through a double refraction element, a magnetooptic element, and a double refraction element in order of mention and converged by a lens to be introduced to a second optical fiber through its excitation end, while a beam from the second optical fiber is not coupled to the first optical fiber. Meanwhile, a beam from an excitation port is coupled to the first optical fiber. The optical device is suitable for use in an optical amplification system and a two-way optical transmission system.
摘要:
A wavelength dispersion compensation device includes an etalon 100 having a slab shape. Reflective films are formed on each side of the etalon 100. The reflective films respectively have predetermined reflectance. Reflectance of one of the reflective films differs according to a light incident angle by using a portion of light within a wavelength range to be used with which a filter characteristic in which transmittance rapidly changes is obtained.
摘要:
A small size and low cost optical receiving apparatus, which can stably demodulate the signal, lights in accordance with the differential M-phase shift keying (DMPSK) system. An optical receiving apparatus comprises a light branching unit for branching the differential M-phase shift keying signal beam into four signal light beams, a delay adjusting unit giving a delay time difference of one symbol between a first signal light beam and a second signal light beam and between a third signal light beam and a fourth signal light beam, a demodulating unit for outputting a least two demodulated light signals through respective interferences between the first signal light beam and the second signal light beam, and between the third signal light beam and the fourth signal light beam on one plane which is not parallel to any signal light beam, and at least two optical detectors for converting at least two light signals into electrical signals.
摘要:
A wavelength selective optical switch of the present invention separates a WDM light emitted from an input port of an input and output optical system, according to wavelengths, by a diffraction grating, and thereafter, condenses the lights of respective wavelengths on MEMS mirrors respectively corresponding to the respective wavelengths, in a mirror array, to reflect them by a condenser optical system, to thereby switch optical paths for the respective lights. The condenser optical system is configured by combining a plurality of lenses whose focal distances are different from each other, and positions in an optical axis direction of the lenses are adjustable by a slide mechanism. Thus, despite an error in the focal distances of the condenser lenses, in a mounting angle of a spectral element or the like, a beam pitch at the condensing positions of the lights of respective wavelengths can be coincident with a mirror pitch in the mirror array.
摘要:
A small-sized magnetic field generator which is suitable for mass production and provides better output stability. A plurality of coils are formed on a non-magnetic insulating material by depositing at least one layer of conductive film in a spiral pattern. A hollow is made in the center of each coil, so that a plurality of main magnetic cores are arranged on the insulating substrate, with their ends fit into those hollows. By supplying appropriate electrical signals to drive the coils individually, their combined magnetic field can be controlled to have an arbitrary distribution. This combined magnetic field is applied to a magneto-optical target device held on the insulating material.
摘要:
The present invention relates to an optical attenuator comprising first and second attenuator units cascaded on an optical path, and a control circuit connected to the first and second attenuator units. Each of the first and second attenuator units includes a Faraday rotator provided on the optical path. The Faraday rotator generates a Faraday rotation angle given as a function of wavelength. Each of the first and second attenuator units further includes polarizing unit for generating an attenuation determined by the Faraday rotation angle on the optical path. The control circuit, for example, controls the Faraday rotation angle in each of the first and second attenuator units so that a wavelength characteristic of attenuation in the first attenuator unit is substantially canceled by a wavelength characteristic of attenuation in the second attenuator unit. With this configuration, although each Faraday rotator generates a Faraday rotation angle given as a function of wavelength, a wavelength characteristic of total attenuation is substantially flattened by the operation of the control circuit.