Abstract:
Disclosed is a method for recovering carbon dioxide from a gas containing carbon dioxide, comprising the step (1) of bringing a gas containing carbon dioxide into contact with an aqueous solution containing 2-isopropylaminoethanol and at least one substance selected from the group consisting of piperazines and alkanolamines to absorb carbon dioxide into the aqueous solution; and the step (2) of heating the aqueous solution containing carbon dioxide absorbed therein, which is obtained in the step (1), to separate and recover carbon dioxide from the solution.
Abstract:
A method of calibrating the beam position in a charged-particle beam system starts with finding a focus deviation on the material surface for each point within a deflection field. A focus correction voltage VF necessary to cancel out the focus deviation is determined. A beam position deviation fi per unit focus correction voltage is found. The deflection voltage is corrected so as to cancel out the product fi·VF. The deflection voltage is corrected so as to cancel out the sum of the product fi·VF and the measured deflection field distortion while correcting the focus based on the voltage VF.
Abstract:
An epoxy resin composition suitably used for a prepreg which can complete curing in a short time even at a low temperature and secure a sufficient usable period under preservation at room temperature, in comparison with conventional epoxy resin compositions. An epoxy resin composition comprising at least one of an epoxy resin, an amine compound having at least one sulfur atom in the molecule thereof, and a reaction product of an epoxy resin and an amine compound having at least one sulfur atom in the molecule thereof, and an amine compound having at least one sulfur atom in the molecule thereof, and a urea compound and a dicyandiamide, wherein each of the contents of the sulfur atom and the urea compound in the epoxy resin composition is respectively 0.2 to 7% by mass and 1 to 15% by mass.
Abstract:
There is disclosed an electrostatic deflector having four pillar-like identical electrodes spaced from each other by 90°. An even number of pillar-like electrodes are disposed in each space between the four electrodes. Spaces are formed on both sides of each one of the first electrodes and have bent portions. The even number of electrodes are arranged symmetrically relative to a third or fourth vertical plane including an axis spaced from the X-axis by 45° or −45°, respectively. Holes are formed across each of the third and fourth vertical planes. Rod-like members are inserted in the holes.
Abstract:
Epoxy resin compositions comprising (a) an epoxy resin, (b) a latent curing agent with curing power at 100° C. or below and (c) an aromatic amine-based curing agent and/or an alicyclic amine-based curing agent, which are curable in two stages, or epoxy resin compositions further comprising (d) a curing accelerator, as well as a prepregs comprising reinforcing fiber materials impregnated with the epoxy resin compositions. The compositions give die-releasable cured products by primary curing at low temperature, give highly heat-resistant cured products by secondary curing, and exhibit satisfactory stability at room temperature.
Abstract:
Disclosed is an aqueous solution for absorbing and recovering carbon dioxide from a carbon dioxide-containing gas, the aqueous solution containing 50 to 70 wt % of a secondary amine compound represented by Formula (1): wherein R represents a straight- or branched-chain alkyl group having 3 to 5 carbon atoms; and a surfactant. Also disclosed is a method for absorbing and recovering carbon dioxide using the aqueous solution.
Abstract:
A lithography method and system have means for determining a convergence value dc from a relation of beam current to beam position drift (or beam dimension drift) produced in the past; means for finding a beam current i(t) as a function of the convergence value dc of beam position drift (or beam dimension drift), a measured value dm of beam position drift (or beam dimension drift), a gain constant g, and a convergence value c of beam position drift (or beam dimension drift) per unit beam current and using an equation given by i(t)={(1+g)·dc−g·dm(t)}/c; means for making a check regarding dm and dc as to whether dm approaches dc and, thus, a relationship given by |dm−dc| 0.
Abstract:
An FRP is produced using a prepreg comprising reinforcing fiber, a sheet-like reinforcing fiber substrate containing reinforcing fiber, and a matrix resin, wherein the matrix resin is impregnated into the sheet-like reinforcing fiber substrate and also covers one surface of the sheet-like reinforcing fiber substrate, and the matrix resin impregnation ratio is within a range of 35% to 95%; a prepreg comprising reinforcing fiber, a sheet-like reinforcing fiber substrate containing reinforcing fiber, and a matrix resin, wherein the matrix resin exists on both surfaces of the sheet-like reinforcing fiber substrate, and the portion inside the sheet-like reinforcing fiber substrate into which the matrix resin has not been impregnated is continuous; or a prepreg comprising reinforcing fiber, a sheet-like reinforcing fiber substrate containing reinforcing fiber, and a matrix resin, wherein at least one surface exhibits a sea-and-island-type pattern comprising resin-impregnated portions (island portions) where the matrix resin is present at the surface and fiber portions (sea portions) where the matrix resin is not present at the surface, the surface coverage ratio of the matrix resin on those surfaces with said a sea-and-island-type pattern is within a range of 3% to 80%, and the weave intersection coverage ratio for the island portions, represented by a formula (1) shown below, is at least 40%, displays excellent external appearance, with no internal voids or surface pinholes, even when molded is conducted using only vacuum pressure. Island portions weave intersection coverage ratio (%)=(T/Y)×100 (1) (wherein, T represents a number of island portions that cover weave intersections, and Y represents a number of weave intersections within said reinforcing fiber woven fabric on said surface with said sea-and-island-type pattern).
Abstract:
A method for producing a fiber-reinforced composite material plate by heating and pressurizing a prepreg for a molding time of 15 minutes or less, at a molding temperature of at least 120° C. and a molding pressure of at least 10 kg/cm2. The prepreg is prepared from a reinforcing fiber and an epoxy resin composition. The epoxy resin composition features: an epoxy resin; an amine compound having at least one sulfur atom in the molecule thereof and/or a reaction product of the epoxy resin and the amine compound having at least one sulfur atom in the molecule thereof; a urea compound; and a dicyandiamide. The contents of the sulfur atom and the urea compound in the epoxy resin composition are respectively 0.2 to 7% by mass and 1 to 15% by mass.
Abstract:
An FRP is produced using a prepreg comprising reinforcing fiber, a sheet-like reinforcing fiber substrate containing reinforcing fiber, and a matrix resin, wherein the matrix resin is impregnated into the sheet-like reinforcing fiber substrate and also covers one surface of the sheet-like reinforcing fiber substrate, and the matrix resin impregnation ratio is within a range of 35% to 95%; a prepreg comprising reinforcing fiber, a sheet-like reinforcing fiber substrate containing reinforcing fiber, and a matrix resin, wherein the matrix resin exists on both surfaces of the sheet-like reinforcing fiber substrate, and the portion inside the sheet-like reinforcing fiber substrate into which the matrix resin has not been impregnated is continuous; or a prepreg comprising reinforcing fiber, a sheet-like reinforcing fiber substrate containing reinforcing fiber, and a matrix resin, wherein at least one surface exhibits a sea-and-island-type pattern comprising resin-impregnated portions (island portions) where the matrix resin is present at the surface and fiber portions (sea portions) where the matrix resin is not present at the surface, the surface coverage ratio of the matrix resin on those surfaces with said a sea-and-island-type pattern is within a range of 3% to 80%, and the weave intersection coverage ratio for the island portions, represented by a formula (1) shown below, is at least 40%, displays excellent external appearance, with no internal voids or surface pinholes, even when molded is conducted using only vacuum pressure. Island portions weave intersection coverage ratio (%)=(T/Y)×100 (1) (wherein, T represents a number of island portions that cover weave intersections, and Y represents a number of weave intersections within said reinforcing fiber woven fabric on said surface with said sea-and-island-type pattern).