Abstract:
A method of performing cell search includes receiving a primary synchronization signal (PSS) comprising a primary synchronization code (PSC) and receiving a secondary synchronization signal (SSS) comprising a first secondary synchronization code (SSC) and a second SSC, wherein the SSS includes a first SSS and a second SSS, the first SSC and the second SSC are arranged in that order in the first SSS, and the second SSC and the first SSC are arranged in that order in the second SSS. Detection performance on synchronization signals can be improved, and cell search can be performed more reliably.
Abstract:
A method for transmitting an aperiodic sounding reference signal (SRS) by a user equipment (UE) in a wireless communication system includes receiving, by the UE from a network, downlink control information (DCI) for downlink scheduling which includes a triggering request of the aperiodic SRS, detecting, by the UE, the triggering request of the aperiodic SRS, and transmitting, by the UE to the network, the aperiodic SRS on an uplink (UL) component carrier (CC) among a plurality of UL CCs based on the DCI for downlink scheduling, wherein if a carrier indicator field (CIF) is included in the DCI for downlink scheduling, the UL CC is indicated by the CIF.
Abstract:
A method for transmitting a demodulation reference signal (DM-RS), by a user equipment (UE), in a wireless communication system is discussed. The method includes receiving, by the UE from a base station, a cyclic shift field in downlink control information (DCI), wherein the cyclic shift field indicates first, second, and third cyclic shift values for first, second, and third layers respectively, generating, by the UE, first, second, and third DMRSs for the first, second, and third layers respectively, based on first, second, and third cyclic shifts respectively, wherein the first, second, and third cyclic shifts are determined based on the first, second, and third cyclic shift values respectively, and transmitting, by the UE to the base station, the first, second, and third DMRSs.
Abstract:
A method for disabling a sequence group hopping by a user equipment (UE) in a wireless communication system, the method includes receiving a cell-specific sequence group hopping parameter from a base station, wherein the cell-specific sequence group hopping parameter is used to enable the sequence group hopping for a plurality of UEs, including the UE, in a cell; receiving a UE-specific sequence group hopping parameter from the base station, wherein the UE-specific sequence group hopping parameter is used to disable the sequence group hopping for the UE; and disabling the sequence group hopping by the UE-specific sequence group hopping parameter.
Abstract:
The present invention relates to a wireless communication system. More particularly, the present invention relates to a method and to an apparatus for transmitting an SRS in a multi-antenna system. The method comprises the steps of: acquiring specific information for discriminating a first antenna group and a second antenna group from among a plurality of antennas, wherein said first antenna group includes one or more antennas which are set to a turned-on state to perform communication with a base station, and said second antenna group includes one or more other antennas which are set to a turned-off state; transmitting an SRS to the base station if a predetermined condition is satisfied, under the condition that the second antenna group is set to the turned-off state; and setting the second antenna group to a turned-off state after the transmission of the SRS.
Abstract:
A method and a relay node (RN) for demodulating a relay physical downlink control channel (R-PDCCH) in a wireless communication system are discussed. The method according to an embodiment includes demodulating the R-PDCCH based on cell-specific reference signals transmitted on at least one first antenna port or based on user equipment (UE)-specific reference signals transmitted on a second antenna port. A type of reference signals among the cell-specific reference signals or the UE-specific reference signals, which is being used to demodulate the R-PDCCH, is configured by a higher layer.
Abstract:
A method is provided for demodulating a signal. A relay node receives control information, from an evolved-NodeB (eNB), through a relay-physical downlink control channel (R-PDCCH), and receives a data, from the eNB, through a physical downlink shared channel (PDSCH). When a number of transmission layers of the PDSCH is 2 or more than 2 and a plurality of reference signals for a demodulation of the data are transmitted on antenna ports by the eNB, a reference signal transmitted on a minimum antenna port among the antenna ports is used for a demodulation of the control information.
Abstract:
A method is provided for transmitting, by a base station, signals in a communication system. Carrier aggregation configuration information is transmitted to a mobile station via a primary carrier band of the mobile station. The carrier aggregation configuration information informs the mobile station of a subsidiary carrier band for the mobile station. Uplink control information for the subsidiary carrier band is received from the mobile station via the primary carrier band. The carrier aggregation configuration information includes a physical identification of a frequency allocation band used as the subsidiary carrier band and a logical identification assigned to the subsidiary carrier band for the mobile station. The physical identification includes one of plural absolute frequency band indexes assigned to frequency allocation bands available in the communication system. The logical identification includes a logical index assigned to the subsidiary carrier band identifying the subsidiary carrier band.
Abstract:
A method is provided for performing a random access procedure by a Node-B with a specific user equipment (UE) within a cell in which a plurality of UEs are located together. The Node-B transmits a random access procedure configuration including a basic sequence index related with a random access channel and zero correlation zone (ZCZ) configuration. The Node-B receives a random access preamble corresponding to the random access procedure configuration from the UE over the random access channel. A length of a cyclic part and a length of a sequence part of the random access preamble are differently given based on the random access procedure configuration. The random access preamble is generated from Constant Amplitude Zero Auto-Correlation (CAZAC) sequences based on the basic sequence index by applying a length of a cyclic shift according to the ZCZ configuration.
Abstract:
A method for transmitting a reference signal by a user equipment (UE) in a wireless communication system. The UE generates an uplink reference signal in a subframe comprising first, second, third, fourth, fifth, sixth and seventh orthogonal frequency division multiplexing (OFDM) symbols in time domain and a plurality of subcarriers in frequency domain. The UE transmits the uplink reference signal to a base station in the third, fourth and fifth OFDM symbols. The transmitted uplink reference signal is hopped in the frequency domain, based on a cell specific hopping parameter.