Abstract:
An optical device, includes a light-transmitting substrate having an input aperture and first and second major surfaces parallel to each other and edges, one partially reflecting surface located in the substrate which is non-parallel to the major surfaces of the substrate and an external optical arrangement having an output aperture optically attached to the input aperture of the substrate with the part of the substrate located next to the substrate input aperture, being substantially transparent.
Abstract:
There is provided a light-guide, compact collimating optical device, including a light-guide having a light-waves entrance surface, a light-waves exit surface and a plurality of external surfaces, a light-waves reflecting surface carried by the light-guide at one of the external surfaces, two retardation plates carried by light-guides on a portion of the external surfaces, a light-waves polarizing beamsplitter disposed at an angle to one of the light-waves entrance or exit surfaces, and a light-waves collimating component covering a portion of one of the retardation plates. A system including the optical device and a substrate, is also provided.
Abstract:
There is provided a light-guide, compact collimating optical device, including a light-guide having a light-waves entrance surface, a light-waves exit surface and a plurality of external surfaces, a light-waves reflecting surface carried by the light-guide at one of the external surfaces, two retardation plates carried by light-guides on a portion of the external surfaces, a light-waves polarizing beamsplitter disposed at an angle to one of the light-waves entrance or exit surfaces, and a light-waves collimating component covering a portion of one of the retardation plates. A system including the optical device and a substrate, is also provided.
Abstract:
Head-mounted display with an eye-tracking system and including a light-transmitting substrate (20) having two major surfaces and edges, optical means for coupling light into said substrate (20) by total internal reflection, partially-reflecting surfaces (22a-22c) carried by the substrate (20) that are not parallel with the major surfaces of the substrate (20), a near-infrared light source (78) and a display source (92) projecting within the photopic spectrum, wherein light from the light source (78) and light from the display source (92) are coupled into the substrate (20) by total internal reflection.
Abstract:
Head-mounted display with an eye-tracking system and including a light-transmitting substrate (20) having two major surfaces and edges, optical means for coupling light into said substrate (20) by total internal reflection, partially-reflecting surfaces (22a-22c) carried by the substrate (20) that are not parallel with the major surfaces of the substrate (20), a near-infrared light source (78) and a display source (92) projecting within the photopic spectrum, wherein light from the light source (78) and light from the display source (92) are coupled into the substrate (20) by total internal reflection.
Abstract:
There is provided an optical system, including a light-transmitting substrate having at least two major surfaces parallel to each other edges, and an optical device for coupling light into the substrate by total internal reflection. The device includes a polarization sensitive reflecting surface.
Abstract:
An optical device, including a light waves-transmitting substrate has two major surfaces and edges, optical means for coupling light into the substrate by total internal reflection, and a plurality of partially reflecting surfaces (22a, 22b) carried by the substrate. The partially reflecting surfaces (22a, 22b) are parallel to each other and are not parallel to any of the edges of the substrate, one or more of the partially reflecting surfaces (22a, 22b) being an anisotropic surface. The optical device has dual operational modes in see-through configuration. In a first mode, light waves are projected from a display source through the substrate to an eye of a viewer. In a second mode, the display source is shut off and only an external scene is viewable through the substrate.
Abstract:
An optical device, including a light waves-transmitting substrate has two major surfaces and edges, optical means for coupling light into the substrate by total internal reflection, and a plurality of partially reflecting surfaces (22a, 22b) carried by the substrate. The partially reflecting surfaces (22a, 22b) are parallel to each other and are not parallel to any of the edges of the substrate, one or more of the partially reflecting surfaces (22a, 22b) being an anisotropic surface. The optical device has dual operational modes in see-through configuration. In a first mode, light waves are projected from a display source through the substrate to an eye of a viewer. In a second mode, the display source is shut off and only an external scene is viewable through the substrate.
Abstract:
A method is described for fabricating an optical device that includes a light waves-transmitting substrate having at least two major surfaces and edges and a plurality of partially reflecting surfaces carried by the substrate, wherein the partially reflecting surfaces are parallel to each other and not parallel to any of the edges of the substrate. The method includes providing at least one transparent flat plate and plates having partially reflecting surfaces and optically attaching together the flat plates so as to create a stacked, staggered form. From the stacked, staggered form, at least one segment is sliced off by cutting across several plates and the segment is ground and polished to produce the light waves-transmitting substrate. The plates are optically attached to each other by an optically adhesive-free process.
Abstract:
Head-mounted display with an eye-tracking system and including a light-transmitting substrate (20) having two major surfaces and edges, optical means for coupling light into said substrate (20) by total internal reflection, partially-reflecting surfaces (22a-22c) carried by the substrate (20) that are not parallel with the major surfaces of the substrate (20), a near-infrared light source (78) and a display source (92) projecting within the photopic spectrum, wherein light from the light source (78) and light from the display source (92) are coupled into the substrate (20) by total internal reflection.