Abstract:
A polarization-diverse optical amplifier includes a polarization-sensitive optically active medium and a polarization splitter. The polarization splitter is configured to receive input light, to direct a first polarization component of the received input light to a first optical path segment, and to direct a second polarization component of the received input light to a separate second optical path segment. The active medium has first and second optical ports. The first optical port is at an end of the first optical path segment. The second port is at an end of the second optical path segment. The active medium outputs amplified light from one of the ports in response to receiving the input light at the other of the ports. In a preferred embodiment, the active medium has an internal optical axis, and the polarizations of the first and second components are oriented relative to that axis so that amplification is enhanced. The two optical path segments may include polarization-maintaining optical waveguides.
Abstract:
A mode-locked laser that has an optical cavity containing multiple optical amplifiers, each dedicated to a respective spectral portion of an optical signal generated by the laser, wherein the dispersion effects are managed by utilizing a separate intra-cavity phase tuner for each such spectral portion and/or by having appropriately configured waveguides corresponding to different spectral portions. Advantageously, a relatively wide combined gain spectrum provided by the optical amplifiers and the intra-cavity dispersion compensation provided by the phase tuners and/or waveguides enable this laser to realize a mode-locking regime that results in the emission of an optical pulse train having a relatively wide frequency spectrum. In one embodiment, the optical cavity of the mode-locked laser has a perfectly spectrally sampled arrayed waveguide grating (AWG) that is configured to divide the optical signal into the spectral portions and apply these portions to the respective waveguides, optical amplifiers, and phase tuners.
Abstract:
Dispersion compensator apparatus comprising 1XM, MXN and NXN couplers, where the coupling ratios of the MXN and NXN couplers are selected such that the dispersion compensator provides a desired amount of dispersion compensation.
Abstract:
An optical differential phase shift key (DPSK) receiver, a method of demodulating an optical DPSK modulated signal and an optical processor capable of operating as either a DPSK receiver or DPSK transmitter. In one embodiment, the DPSK receiver includes: (1) an optical waveguide and a delay line associated therewith configured to receive simultaneously an optical DPSK modulated signal, (2) a coupler having at least two inputs and at least four outputs, the at least two inputs configured to terminate the optical waveguide and the delay line, the delay line having a path length difference that delays the optical DPSK modulated signal by at least one timeslot relative to the optical waveguide and (3) photodetectors associated with the at least four outputs and configured to provide signals indicative of digital data contained in components of the optical DPSK modulated signal.
Abstract:
An apparatus and method are provided for manipulating light beams propagated through PLCs in free space. Light beams propagated in through an input/output waveguide of a PLC are propagated through a waveguide array to generate a phased array output at an edge facet of the PLC. The phased array output at the edge facet is spatially Fourier transformed by a lens in free space, generating a spectrally resolved image at the back focal plane of the lens. The spectrally resolved image is reflected, at least in part, by a reflector device and coupled into a desired waveguide array of a PLC to produce a desired output.
Abstract:
A low-loss integrated optical coupler includes at least three substantially similar optical couplers, adjacent ones of the optical couplers interconnected via at least one set of waveguides, each of the sets of waveguides comprising a path-length difference between the waveguides therein. In one embodiment of the present invention, the multi-section optical coupler comprises at least two arms and the path-length differences are adjustable such that signals traversing the at least two arms undergo a relative phase shift, such that a desired output power splitting ratio for the multi-section optical coupler is achieved. Alternatively, the optical coupler is implemented in an inventive optical device that functions at least, as an optical switch or an optical splitter.
Abstract:
The inventor proposes herein a novel optical monitor requiring only a single fiber-coupled photodetector. In one embodiment of the present invention, the optical monitor further includes an optical coupler for tapping a portion of an optical signal, a tunable filter for filtering the tapped optical signal at a predetermined frequency, and a Faraday rotator mirror for removing any polarization dependence of the tapped optical signal and for reflecting the filtered optical signal back through the tunable filter and the coupler. Subsequently, the photodetector of the optical monitor measures the power of the filtered optical signal. The optical spectrum of the optical signal is thus measured by scanning the tunable filter across the band of the optical signal and measuring the power of the optical signal as a function of the optical frequency of the tunable filter.
Abstract:
Timing alignment between a pulse carver (i.e., intensity modulator) and a phase modulator, e.g., in a return-to-zero (RZ) differential phase-shift keying (DPSK) optical transmitter, is monitored by filtering a signal from the transmitter and measuring the power of the filtered signal. In certain embodiments, the filter has a birefringent device (such as a polarization-maintaining fiber) and a polarizer. The polarizer may be a rotating polarizer with a rotating quarter-wave plate in front of it. In other embodiments, the filter is a periodic filter such as a Mach-Zehnder interferometer or an etalon filter. Regardless, the measured power may be used to generate control signals used to variably delay the signals that drive the phase modulator and/or the pulse carver to compensate for detected misalignment. The measured power may also be used to monitor the bit-error-rate degradation caused by timing misalignment between the pulse carver and the phase modulator.
Abstract:
An optical device includes an array of optical grating couplers and a plurality of single-core fiber couplers located over a planar substrate. The optical grating couplers of the array are located to optically couple in a one-to-one manner to optical cores of a multi-core fiber or optical cable having an end located adjacent to the surface. Each single-core fiber coupler includes a planar optical waveguide connecting a corresponding one of the optical couplers of the array to an edge of the substrate.
Abstract:
A proposed integrateable optical interleaver includes an input Y-branch coupler and at least two multi-section optical couplers. The multi-section optical couplers of the interleaver include at least three substantially similar optical couplers, adjacent ones of the optical couplers interconnected via at least one set of waveguides. The interleaver of the present invention comprises a highly compact and fabrication-robust form that is capable of being integrated onto a single planar lightwave circuit.