Abstract:
A method and apparatus for controlling a multiple-stage actuator for a disk drive which does not require an additional sensor for measuring the relative position between adjacent actuator stages. In a two-stage actuator system, a position-type secondary actuator (SA) rides piggyback on a primary actuator (PA). The repeatable runout is measured and used as a feedforward signal to the PA. If the PA is a rotary actuator, the feedforward signal is preferably arc corrected for the arc that the head transverses from the inner radius to the outer radius of the disk. Added to the feedforward signal is the moving average of the drive signal applied to the SA. Because the SA is of the position-type having a neutral position, this moving average is proportional to the time cumulative drift present in the two-stage actuator system, and forces the PA in a direction that minimizes deviation of the SA from its neutral position. This minimizes the range requirement for the SA, the main purpose of which is to reduce non-repeatable runout.
Abstract:
A rotary microactuator includes a movable structure having a center of rotation about which the movable structure rotates, a stationary structure formed on a substrate, and a flexure member attaching the movable structure to the attachment structure of the stationary structure. The stationary structure has an attachment structure having an area including the center of rotation of the movable structure and having an attachment surface enclosing the center of rotation. The flexure member includes at least one flexure element. Each flexure element is attached to the attachment surface of the attachment structure and extends radially to the movable structure. A distance between the center of rotation of the movable structure and a point on the attachment surface of the stationary structure where one end of a flexure element is attached being shorter than a length of the flexure element.
Abstract:
A microfabricated wobble motor with a positioning arm attached to the wobble motor rotor acts as a fine positioner with bidirectional movement. The primary application is a rotary actuator for the read/write head in a very small magnetic recording disk drive. An integrated head-arm assembly is attached at one end to the rotor of the wobble motor. The other end of the head-arm assembly has a head carrier that is maintained in contact with the disk. Head position error information is read from the disk and used to provide control signals to each of the stator elements. The stator elements are sequentially addressed by applying a voltage from a driver circuit. This causes the rotor to be electrostatically attracted to the activated stators, so that the rotor is movable bidirectionally. The read/write head can thus be moved bidirectionally to any of the data tracks on the disk and maintained on a desired data track for reading or writing data. The fine positioner also includes a digital control system where each of the stator elements is represented by an address, and the movement of the rotor is controlled by incrementing or decrementing the stator address in an address register.
Abstract:
Methods and apparatuses to detect configuration commands from waveforms received at a retina prosthesis device for calibrating the device are described. The device can comprise an array of pixel units to receive light to stimulate neuron cells to cause an effect of visual sensation from the light. The pixel units may have configurable parameters for the stimulation to the neuron cells. The configurable parameters may be updated according to the configuration commands detected without requiring micro processor and non-volatile memory in the device. The stimulation may be generated according to the updated configurable parameters to improve the effect of visual sensation from the light including compensation for the physiological and environmental variations and drifts.
Abstract:
An implant apparatus comprising a plurality of photo sensors, a plurality of micro electrodes, a plurality of guard rings surrounding the micro electrodes and circuitry coupled to the photo sensors and the micro electrodes are described. The photo sensors may receive incoming light. The circuit may drive the micro electrodes to stimulate neuron cells for enabling perception of a vision of the light captured by the photo sensors. The guard rings may confine electric flows from the micro electrodes to the targeted neuron cells. The apparatus may be implemented in a flexible material to conform to a shape of a human eyeball to allow the micro electrodes aligned with the neuron cells for the stimulation.
Abstract:
A non-planner integrated circuit device comprising a flexible structure and at least one fixture structure bonded to the flexible structure is described. The flexible structure may be curved in a desired deformation. A plurality of contact areas may be included in the flexible structure. Circuitry may be embedded within the flexible structure to perform processing operations. In one embodiment, the fixture structure may be bonded with the fixture structure via the contact areas to provide holding constraints allowing the flexible structure to remain curved. The bonding pads can also be used to connect communications in electrical signals.
Abstract:
An implant apparatus comprising a plurality of photo sensors, a plurality of micro electrodes and circuitry coupled to the photo sensors and the micro electrodes are described. The photo sensors may receive incoming light. The circuit may drive the micro electrodes to stimulate neuron cells for enabling perception of a vision of the light captured by the photo sensors. The apparatus may be implemented in a flexible material to conform to a shape of a human eyeball to allow the micro electrodes aligned with the neuron cells for the stimulation.
Abstract:
Methods and apparatuses for configuring an implantable device to interface with retina cells are described. The device may comprise an array of pixel units capable of stimulating the retina cells are described. The pixel units may operate in a mode of operation selected from a plurality of modes including a normal mode and a calibration mode. A control circuitry of the device may be configured to switch the mode of operation for the pixel units. In one embodiment, the pixel units may be configured to receive light for stimulating the retina cells during the normal mode to enable perception of the light. During the calibration mode, the pixel units may be configured to adjust amount of stimulation to the retina cells.
Abstract:
The present invention addresses the aims and issues of making multi layer microstructures including “metal-shell-oxide-core” structures and “oxide-shell-metal-core” structures, and mechanically constrained structures and the constraining structures using CMOS (complimentary metal-oxide-semiconductor transistors) materials and layers processed during the standard CMOS process and later released into constrained and constraining structures by etching away those CMOS materials used as sacrificial materials. The combinations of possible constrained structures and methods of fabrication are described.
Abstract:
A milliactuator integrated with driver and relative position error sensor circuits formed on a single silicon substrate. The integrated milliactuator/electronics module is positioned between the suspension and the slider/transducer assembly to provide rapid, small motion position control of the slider/transducer over data tracks on the disk of a magnetic disk drive. Integration of the milliactuator electronics with the milliactuator reduces parasitic loading and interference problems with the magnetic transducer signals. Electronic circuits are built on a silicon wafer followed by deposition of a planarization layer and a ground plane layer for isolation from the milliactuator which is then built on top of the circuits.