Abstract:
A vehicular automated parking system includes a camera having a field of view rearward of the vehicle. When the vehicle is parked in a parking space, with a forward vehicle parked in front of the vehicle and a rearward vehicle parked behind the vehicle, the vehicular automated parking system determines a forward limit of the parking space responsive to a driver of the vehicle driving the vehicle forward until a front end of the vehicle is close to the forward vehicle. Responsive to the determined forward limit of the parking space, and responsive to processing by an image processor of image data captured by the camera, the vehicular automated parking system controls the vehicle when the vehicle is leaving the parking space in a manner that avoids the forward vehicle parked in front of the vehicle and the rearward vehicle parked behind the vehicle.
Abstract:
A vision system for a vehicle includes a camera disposed at the vehicle and having a field of view exterior of the vehicle. The camera captures image data. A control includes an image processor operable to process image data captured by the camera. The control, responsive at least in part to putative detection of a traffic sign via image processing by the image processor of image data captured by the camera, enhances resolution of captured image data based at least in part on known traffic sign images to generate upscaled image data. The control compares captured image data to upscaled image data to determine and/or classify and/or identify the putatively detected traffic sign.
Abstract:
A vision system for a vehicle includes a camera disposed at the vehicle and having a field of view exterior of the vehicle. The camera captures image data. A control includes an image processor operable to process image data captured by the camera. The control, responsive at least in part to putative detection of a traffic sign via image processing by the image processor of image data captured by the camera, enhances resolution of captured image data based at least in part on known traffic sign images to generate upscaled image data. The control compares captured image data to upscaled image data to determine and/or classify and/or identify the putatively detected traffic sign.
Abstract:
A display system for a vehicle includes an interior camera disposed in an interior cabin of a vehicle and having a field of view interior of the vehicle that encompasses an area at or near a user input for an accessory, with the user input being accessible by a driver of the vehicle when the driver is normally operating the vehicle. A display device is viewable by the driver when the driver is normally operating the vehicle. The display device is operable to display images derived from image data captured by said interior camera. The display device displays images depicting the driver's hand as the driver's hand approaches the user input for the accessory for actuating the user input to adjust or control the accessory.
Abstract:
A vision system of a vehicle includes a camera and an image processor. The camera is configured to be disposed at a vehicle so as to have a field of view exterior of the vehicle. The image processor is operable to process image data captured by the camera to classify patterns of retroreflective reflectors present in the field of view of the camera. The image processor compares determined patterns of retroreflective reflectors to a database of patterns and classifies patterns of retroreflective reflectors at least in part responsive to determination that determined patterns of retroreflective reflectors generally match a pattern of the database. The image processor may compare movement of determined patterns of retroreflective reflectors and pattern movements of the database over multiple frames of captured image data and may classify the retroreflective reflectors at least in part responsive to determination that the movements generally match.
Abstract:
A vehicular driving assist system includes a plurality of cameras disposed at a vehicle and an image processor that processes captured image data. With a trailer equipped with at least one trailer camera hitched to the vehicle, a display screen displays video images derived from captured image data. The system determines a reversing path for the vehicle and trailer to follow to assist the driver in backing up the trailer, and generates a graphic overlay at the display screen that indicates the determined reversing path. During the backing up maneuver of the trailer hitched to the vehicle, and responsive to determination of an object rearward of the trailer, the system (i) determines an adjusted reversing path to avoid the object and (ii) adjusts the graphic overlay to indicate the adjusted reversing path of the vehicle and trailer for the driver to follow in backing up the trailer.
Abstract:
A vehicular automated parking system includes a plurality of cameras viewing exterior of the vehicle. While the vehicle is traveling along the road, the vehicular automated parking system operates in a parking space locating mode to determine available parking spaces at least in part via processing, at an electronic control unit having an image processor, of image data captured by at least one camera of the plurality of cameras. The vehicular automated parking system fuses the determined available parking spaces with map data to generate an annotated map for display at the video display screen for viewing by the driver of the vehicle to assist the driver in selecting a parking space from the determined available parking spaces. After selection of the parking space, the vehicular automated parking system parks the equipped vehicle in the selected parking space.
Abstract:
A method for displaying video images via a vehicular vision system includes providing a rear backup camera having an imager and a wide angle lens disposed at the imager with its center axis vertically offset from a center region of an imaging array sensor of the imager. A distant central horizon region is imaged at the upper region of the imaging array sensor via light that has passed through a center region of the wide angle lens, and a closer region is imaged at the center region and the lower region of the imaging array sensor via light that has passed through a lower peripheral region of the wide angle lens. Video images derived from image data captured by the rear backup camera are displayed on a video display for viewing by a driver of the vehicle during a reversing maneuver of the vehicle.
Abstract:
A vision system for a vehicle includes side and rear cameras that are operable to capture image data. The rear camera is configured to be disposed at a rear portion of the vehicle so as to have a rearward field of view and the side cameras are configured to be disposed at respective side portions of the vehicle so as to have respective sideward and rearward fields of view. The rear camera has a rear imager and a wide angle lens, which is disposed at the rear imager with its center axis offset from a center region of the rear imager so as to be disposed at and to image at an upper region of the rear imager. An image processor processes captured image data to merge captured image data to provide a panoramic image for display to the driver during a reversing maneuver of the vehicle.
Abstract:
A vision system for a vehicle includes a camera disposed at the vehicle and having a field of view exterior of the vehicle. A control, via processing of image data captured by the camera, is operable to detect the presence of a vehicle and a blinking light source in the field of view of the camera. The control, via processing of captured image data, determines an angle of the detected vehicle relative to the equipped vehicle and, responsive to determination of the angle, determines a middle region of an end of the detected vehicle. Responsive to detection of the vehicle and the blinking light source, the vision system is operable to determine whether the detected blinking light source is a left turn signal indicator of the detected vehicle or a right turn signal indicator of the detected vehicle.