摘要:
A process for removing trioxane from a use stream I of formaldehyde, trioxane and water, by a) providing a use stream I which comprises formaldehyde as the main component and trioxane and water as the secondary components, b) feeding the use stream I, a recycle stream V and a recycle stream VII which comprises formaldehyde as the main component and water and trioxane as the secondary components into a first distillation stage and distilling at a pressure of from 0.1 to 2.5 bar to obtain a stream II which comprises formaldehyde as the main component and water as the secondary component, and a stream III which comprises trioxane as the main component and water and formaldehyde as the secondary components, and a stream X which comprises water, trioxane and formaldehyde, c) distilling the stream III, optionally after removing low boilers from the stream III in a low boiler removal stage, in a second distillation stage at a pressure of from 0.2 to 17.5 bar, the pressure in the second distillation stage being from 0.1 to 15 bar higher than the pressure in the first distillation stage, to obtain a stream IV which consists substantially of trioxane and the recycle stream V which comprises trioxane as the main component and water and formaldehyde as the secondary components, d) feeding the stream X and if appropriate a stream IX which comprises water as the main component into a third distillation stage and distilling at a pressure of from 1 to 10 bar to obtain a stream VI which consists substantially of water and a recycle stream VII which comprises formaldehyde as the main component and water and trioxane as the secondary components.
摘要:
A process for preparing formaldehyde by gas-phase oxidation of methanol vapor by means of a gas stream comprising molecular oxygen in the presence of a fixed-bed catalyst comprising iron and molybdenum, wherein the process is carried out in a reactor (1) having heat-exchange plates (2) which are arranged in the longitudinal direction of the reactor (1) and have a spacing between them and through which a heat transfer medium flows, inlet and outlet facilities (3, 4) for the heat transfer medium to the heat-exchange plates (2) and also gaps (5) between heat-exchange plates (2) in which the fixed-bed catalyst is present and into which the methanol vapor and the gas stream comprising molecular oxygen are passed, is described.
摘要:
A process for preparing polyoxymethylene homopolymers or copolymers (7) by homopolymerization or copolymerization of trioxane, starting from methanol (1), in which methanol (1) is oxidized in a first reactor in a first production plant (A) to give an aqueous formaldehyde-comprising stream (2) which is fed to a second production plant (B) in which pure trioxane (6) is obtained and removal of low boilers (5) by distillation is carried out and the pure trioxane (6) is fed to a third production plant (C) in which it is homopolymerized or copolymerized to form polyoxymethylene homopolymers or copolymers (7), wherein the low boiler stream (5) from the low boiler removal column (K 2) is recycled to the feed stream into the first reactor in the first production plant (A), is proposed.
摘要:
A process for separating trioxane from a feed stream I comprising formaldehyde, trioxane and water, in which a) a feed stream I comprising formaldehyde as main component and trioxane and water as secondary components is provided, b) the feed stream I, a recycle stream V and a recycle stream VII comprising formaldehyde as main component and water and trioxane as secondary components are fed into a first distillation stage and distilled at a pressure of from 0.1 to 2.5 bar to give a stream II comprising formaldehyde as main component and water as secondary component and a stream III comprising trioxane as main component and water and formaldehyde as secondary components and a stream X comprising water, trioxane and formaldehyde, c) the stream III is, if appropriate after removal of low boilers from the stream III in a low boiler removal stage, distilled in a second distillation stage at a pressure of from 0.2 to 17.5 bar, with the pressure in the second distillation stage being from 0.1 to 15 bar higher than the pressure in the first distillation stage, to give a stream IV consisting essentially of trioxane and the recycle stream V comprising trioxane as main component and water and formaldehyde as secondary components, c1) the stream IV is purified in at least one further trioxane distillation stage at a pressure at the top of from 0.5 to 2 bar to give purified trioxane as side offtake stream XII in the enrichment section of the column, d) the stream X and, if appropriate, a stream IX comprising water as main component are fed into a third distillation stage and distilled at a pressure of from 1 to 10 bar to give a stream VI consisting essentially of water and a recycle stream VII comprising formaldehyde as main component and water and trioxane as secondary components, is described.
摘要:
A process for preparing formaldehyde by gas-phase oxidation of methanol vapor by means of a gas stream comprising molecular oxygen in the presence of a fixed-bed catalyst comprising iron and molybdenum, wherein the process is carried out in a reactor (1) having heat-exchange plates (2) which are arranged in the longitudinal direction of the reactor (1) and have a spacing between them and through which a heat transfer medium flows, inlet and outlet facilities (3, 4) for the heat transfer medium to the heat-exchange plates (2) and also gaps (5) between heat-exchange plates (2) in which the fixed-bed catalyst is present and into which the methanol vapor and the gas stream comprising molecular oxygen are passed, is described.
摘要:
A resistive sense memory cell includes a layer of crystalline praseodymium calcium manganese oxide and a layer of amorphous praseodymium calcium manganese oxide disposed on the layer of crystalline praseodymium calcium manganese oxide forming a resistive sense memory stack. A first and second electrode are separated by the resistive sense memory stack. The resistive sense memory cell can further include an oxygen diffusion barrier layer separating the layer of crystalline praseodymium calcium manganese oxide from the layer of amorphous praseodymium calcium manganese oxide a layer. Methods include depositing an amorphous praseodymium calcium manganese oxide disposed on the layer of crystalline praseodymium calcium manganese oxide forming a resistive sense memory stack.
摘要:
Process for distillatively separating a mixture containing a vinyl ether of the general formula (I) R1—O—CH═CH2 (I) and alcohol of the general formula (II) R2—OH (II) in which R1 and R2 are each independently a saturated or unsaturated, aliphatic or cycloaliphatic radical having from 2 to 10 carbon atoms, and in which the alcohol (II) has a boiling point which is at least 1° C. higher, measured at or extrapolated to 0.1 MPa abs, than the vinyl ether (I), by a) passing the mixture into a first distillation column and withdrawing, as a top product, an azeotrope containing vinyl ether (I) and alcohol (II) and, as a bottom product, a stream enriched with the alcohol (II); b) passing the azeotrope containing vinyl ether (I) and alcohol (II) from the first distillation column into a second distillation column which is operated at a pressure which is from 0.01 to 3 MPa higher compared to the first distillation column, and withdrawing, as a bottom product or gaseous sidestream in the stripping section, the vinyl ether (I) and, as a top product, an azeotrope containing vinyl ether (I) and alcohol (II); and c) recycling the azeotrope containing vinyl ether (I) and alcohol (II) from the second distillation column into the first distillation column.
摘要:
Process for distillatively separating a mixture containing a vinyl ether of the general formula (I) R1—O—CH═CH2 (I) and alcohol of the general formula (II) R2—OH (II) in which R1 and R2 are each independently a saturated or unsaturated, aliphatic or cycloaliphatic radical having from 2 to 10 carbon atoms, and in which the alcohol (II) has a boiling point which is at least 1° C. higher, measured at or extrapolated to 0.1 MPa abs, than the vinyl ether (I), by a) passing the mixture into a first distillation column and withdrawing, as a top product, an azeotrope containing vinyl ether (I) and alcohol (II) and, as a bottom product, a stream enriched with the alcohol (II); b) passing the azeotrope containing vinyl ether (I) and alcohol (II) from the first distillation column into a second distillation column which is operated at a pressure which is from 0.01 to 3 MPa higher compared to the first distillation column, and withdrawing, as a bottom product or gaseous sidestream in the stripping section, the vinyl ether (I) and, as a top product, an azeotrope containing vinyl ether (I) and alcohol (II); and c) recycling the azeotrope containing vinyl ether (I) and alcohol (II) from the second distillation column into the first distillation column.
摘要:
The invention provides a process for preparing diphenylmethanediamine, comprising the steps of: a) reacting aniline with formaldehyde in the presence of an acid, b) neutralizing the predominant part of the acid with ammonia and/or aqueous ammonia solution, c) separating the reaction mixture from step b) into an aqueous phase and an organic phase, d) neutralizing the other part of the acid, present in the organic phase, with aqueous alkali metal hydroxide solution, e) separating the reaction mixture from step d) into an aqueous phase and an organic phase, f) treating the aqueous phase obtained in step c) or optionally the combined aqueous phases from steps c) and e) with at least one oxide or hydroxide of an alkaline earth metal, g) removing the ammonia obtained in step f).
摘要:
The invention provides a process for preparing diphenylmethanediamine, comprising the steps of a) reacting aniline with formaldehyde in the presence of an acid, b) neutralizing the acid with ammonia, c) separating the reaction mixture from step b) into an aqueous phase and an organic phase, d) treating the aqueous phase obtained in step c) with an oxide or hydroxide of an alkaline earth metal, e) separating off the ammonia obtained in step d).