摘要:
An embedded electroconductive layer is disclosed which comprises an opening part or a depressed part 3 formed in an insulating film 2 on a substrate 1, a barrier layer for covering the opening part or the depressed part, a metal growth promoting layer 5 on the barrier layer, and an electroconductive layer 6 embedded in the opening part or the depressed part via the barrier layer 4 and the metal growth promoting layer 5.
摘要:
An embedded electroconductive layer is disclosed which comprises an opening part or a depressed part 3 formed in an insulating film 2 on a substrate 1, a barrier layer for covering the opening part or the depressed part, a metal growth promoting layer 5 on the barrier layer, and an electroconductive layer 6 embedded in the opening part or the depressed part via the barrier layer 4 and the metal growth promoting layer 5.
摘要:
A power supply apparatus includes a front panel, a rear panel and two left and right side panels which together form a housing. Opposed edges of a partition are connected to the front and rear panels to thereby divide the interior space of the housing into upper and lower chambers. The left and right side panels each have edges which are placed to abut against the corresponding edges of the other side panel.Components of a power supply circuit are appropriately distributed in the upper and lower chambers. Some of the components in the upper chambers are located beneath the upper abutting edges of said left and right side panels, and a cover is disposed to cover at least those components which are located beneath the upper abutting edges.
摘要:
Power supply apparatus includes a converter which converts a commercial AC voltage into a DC voltage. An inverter converts the DC voltage into a high frequency voltage. The high frequency voltage is voltage-transformed by a transformer, and then rectified and smoothed by a rectifier and a smoothing reactor into a DC voltage. This DC voltage is applied between a workpiece and a torch. A high frequency voltage generator generates a high frequency voltage and applies it to a primary winding of a coupling transformer. A boosted high frequency voltage is induced in a first secondary winding and applied between the workpiece and the torch, so that arcing is initiated. The coupling transformer includes a second secondary winding in which another high frequency voltage is induced. The high frequency voltage induced in the second secondary winding is converted into a DC voltage by a diode and a smoothing capacitor for application between the workpiece and the torch, so that the arcing is sustained.
摘要:
A power supply apparatus for arc-utilizing equipment includes a first converter for converting a received AC voltage to a DC voltage. An inverter converts the DC voltage to a high-frequency voltage, which is applied to a voltage-transformer with primary and second windings. A voltage-transformed high-frequency voltage induced in the secondary winding is converted to a DC voltage in a second converter, which is developed between two output terminals. The respective ones of the two output terminals are connected to a torch electrode of the arc-utilizing equipment and a workpiece. A bypass capacitor and a high-frequency voltage generator circuit are serially connected between the two output terminals. A control circuit controls the high-frequency voltage generator circuit and the inverter circuit. The bypass capacitor is connected directly between one of the two output terminals and the high-frequency voltage generator circuit.
摘要:
The impurity density of a photoelectric transducer n-layer (7) and the impurity density of a p-layer (6) of an impurity region in which the electric transducer (7) and a transfer channel (9) are formed, are each distributed to have its maximum value in a more interior part from the surface of a semiconductor substrate (5). Alternatively, i) a thin, high-density p-layer (34) and ii) a thick, low-density p-layer (33) of an impurity region in which the electric transducer (7) and the transfer channel (9) are formed may be formed. Each minimum potential in these two p-layers (33, 34) is made to have a different dependence on the voltage applied to an n-type semiconductor substrate (5). The thick, low-density p-layer (33) is formed in such a way that it comes into contact with part of the photoelectric transducer n-layer (7) at its bottom portion. The above constitution can bring about a solid-state image pickup device that can prevent the blooming phenomenon, causes less residual images, and can operate as an electronic shutter with ease.