Abstract:
An amplifier circuit for analog-signal processing has an operational amplifier having an output, an inverting input, and supply inputs for accepting a single supply potential and a reference potential. The operational amplifier has a noninverting input capable of accepting a signal voltage of a varying analog signal input thereto which has a positive value range and a negative value range relative to the reference potential. The output is fed back to the inverting input and the operational amplifier has a differential amplifier having first and second field-effect transistors. The first field-effect transistor has a gate connected to the noninverting input of the operational amplifier and the second field-effect transistor has a gate connected to the inverting input. The first field-effect transistor has a threshold voltage lower than a threshold voltage of the second field-effect transistor by an amount at least equal to an amount of a value range of the analog signal voltage outside a range defined by the single supply potential and the reference potential to offset an output signal at the output to within the range defined by the single supply potential and the reference potential.
Abstract:
A capacitive-to-digital converter is provided which includes: sensor, offset and reference capacitors, an integrator circuit and a demodulation circuit. The sensor capacitor is switched according to a first clock and the offset capacitor according to a second clock, which has a higher switching frequency. The reference capacitor is switched according to a return signal from the converter's output. The integrator circuit includes an integrator capacitor, and has first and second nodes, with the sensor, offset and reference capacitors each being switched to the first and second nodes based on the respective first clock, second clock or return signal. The demodulation circuit receives and converts output of the integrator circuit into a digital output. The higher frequency clocking of the offset capacitor allows for a reduction in capacitance of the offset, reference or integrator capacitor, and the multiclocking of the converter allows for use of a multireferencing to the sensor capacitor.
Abstract:
A capacitive-to-digital converter is provided which includes: sensor, offset and reference capacitors, an integrator circuit and a demodulation circuit. The sensor capacitor is switched according to a first clock and the offset capacitor according to a second clock, which has a higher switching frequency. The reference capacitor is switched according to a return signal from the converter's output. The integrator circuit includes an integrator capacitor, and has first and second nodes, with the sensor, offset and reference capacitors each being switched to the first and second nodes based on the respective first clock, second clock or return signal. The demodulation circuit receives and converts output of the integrator circuit into a digital output. The higher frequency clocking of the offset capacitor allows for a reduction in capacitance of the offset, reference or integrator capacitor, and the multiclocking of the converter allows for use of a multireferencing to the sensor capacitor.
Abstract:
Method and system are provided for evaluating linearity of a capacitive-to-digital converter (CDC) of a capacitive sensor integrated circuit chip. The evaluating employs multiple test capacitors, which may be on-chip with the CDC, and includes: obtaining capacitance values for the multiple test capacitors and parasitic capacitances of a first input A and a second input B to the capacitive-to-digital converter; applying the multiple test capacitors in multiple permutations to the first input A and the second input B, and for each of at least some permutations, determining an error between an expected output of the CDC using the obtained capacitance values and an actual measured output of the CDC; and determining linearity error for the CDC using the determined errors for the permutations of applying the multiple test capacitors to the first input A and the second input B of the CDC.
Abstract:
An adaptive switch circuit is provided, which includes a CMOS switch, an off-level voltage generator, and a booster circuit. The CMOS switch includes first PMOS and NMOS coupled transistors. The generator provides, via first and second outputs, first and second voltage levels, and includes second PMOS and NMOS transistors. The second PMOS transistor is series connected between VDD and a first bias source and the second NMOS transistor is series connected between VSS and a second bias source. The booster circuit, which is coupled to the generator between its outputs, and to the PMOS and NMOS gates of the CMOS switch, capacitively stores during off level first and second boost voltages, which are coupled to the PMOS and NMOS gates. The boost voltages are offset from VDD and VSS, respectively, each by approximately a threshold voltage of the respective transistor type.
Abstract:
A circuit arrangement for producing a defined output signal in CMOS integrated circuit is provided in which the output of a sensor signal conditioning circuit is connected to the drain terminal of a first N channel depletion transistor, to a source terminal of a second N channel depletion transistor and to the output (OUT) of an integrated CMOS circuit. The gate terminals of the first and second N channel depletion transistors are connected to the output (VP) of a control circuit and the first terminal of a discharge resistance. The second terminal of the discharge resistance and the source terminal of the first N channel depletion transistor are connected to a potential VSS, and the drain terminal of the second N channel depletion transistor is connected to a potential VDD.
Abstract:
A hose coupling with a clamp which can be clamped around a longitudinal axis, wherein the edges of the clamp are located closer to the longitudinal axis than an area of the clamp located between the edges. The hose coupling further includes a pipe, wherein an end portion of the hose can be pushed onto an end portion of the pipe and can be clamped by means of the clamp. The end portion of the pipe is provided with a circumferential holding rib, wherein the end portion of the hose can be pushed past the holding rib and wherein the clamp can be clamped on the hose above the holding rib so that the hose is secured between the holding rib and the clamp. The clamp includes an elastic, circular circumferential metal clamping band of uniform thickness.
Abstract:
A connection of a hose clamp and a hose has a rubber-elastic ring that surrounds the hose detachably and with elastic pretension. The ring is positioned underneath a clamp strap of the hose clamp. The ring has radial hook-shaped first projections for locking the clamp strap of the hose clamp between the first projections by engaging across edges of the clamp strap. The first projections are formed on edges of the ring. The thickness of the ring in an area located axially between the first projections is 5% to 9% of the wall thickness of the hose.
Abstract:
A circuit layout for measuring ion concentrations in solutions using ion-sitive field effect transistors is provided. The circuit layout makes it possible to represent the threshold voltage difference of two ISFETs directly and independently of technological tolerances, operationally caused parameter fluctuations, and ambient influences. The circuit layout includes two measuring or test amplifiers, with in each case two differently or identically sensitive ISFETs and two identical FETs. The ISFETs and FETs are connected in such a manner that at the output of the first measuring amplifier occurs the difference of the mean value of the two ISFET threshold voltages and the FET threshold voltage and at the output of the second measuring amplifier occurs the difference of the two ISFET threshold voltages. The output of the first amplifier is connected to the common reference electrode of the four ISFETs.
Abstract:
A read-write circuit has two data lines each of which is associated with a read circuit. The read circuit consists of three transistors connected in series, which operate in the low-signal mode in reading. By taking current from or into the bit lines according to the previously stored information the voltage ratios are changed at the outputs by which a data output driver is controlled. In writing, the n-transistors in the read circuits form with two p-transistors NOT circuits whose outputs form the data lines.